print.cv.npmr {npmr} | R Documentation |
summarize a "cv.npmr" object
Description
Print (1) the call that produced the cv.npmr
object;
(2) the value of the regularization parameter lambda that led to the
minimum cross validation error; (3) the rank of the fitted regression
coefficient matrix; and (4) the per-observation cross validation error using
the optimal lambda.
Usage
## S3 method for class 'cv.npmr'
print(x, ...)
Arguments
x |
an object of class |
... |
ignored |
Author(s)
Scott Powers, Trevor Hastie, Rob Tibshirani
References
Scott Powers, Trevor Hastie and Rob Tibshirani (2016). “Nuclear penalized multinomial regression with an application to predicting at bat outcomes in baseball.” In prep.
See Also
Examples
# Fit NPMR to simulated data
K = 5
n = 1000
m = 10000
p = 10
r = 2
# Simulated training data
set.seed(8369)
A = matrix(rnorm(p*r), p, r)
C = matrix(rnorm(K*r), K, r)
B = tcrossprod(A, C) # low-rank coefficient matrix
X = matrix(rnorm(n*p), n, p) # covariate matrix with iid Gaussian entries
eta = X
P = exp(eta)/rowSums(exp(eta))
Y = t(apply(P, 1, rmultinom, n = 1, size = 1))
fold = sample(rep(1:10, length = nrow(X)))
# Simulate test data
Xtest = matrix(rnorm(m*p), m, p)
etatest = Xtest
Ptest = exp(etatest)/rowSums(exp(etatest))
Ytest = t(apply(Ptest, 1, rmultinom, n = 1, size = 1))
# Fit NPMR for a sequence of lambda values without CV:
fit2 = cv.npmr(X, Y, lambda = exp(seq(7, -2)), foldid = fold)
# Print the NPMR fit:
fit2
[Package npmr version 1.3.1 Index]