| dkern {npmlreg} | R Documentation | 
Aitchison-Aitken kernel
Description
Discrete kernel for categorical data  with k unordered categories.
Usage
dkern(x, y, k, lambda)
Arguments
| x | categorical data vector | 
| y | postive integer defining a fixed category | 
| k | positive integer giving the number of categories | 
| lambda | smoothing parameter | 
Details
This kernel was introduced in Aitchison & Aitken (1976); see also Titterington (1980).
The setting lambda =1/k corresponds to the extreme case 'maximal smoothing',
while lambda = 1 means ‘no smoothing’. Statistically sensible settings are 
only 1/k\le lambda \le1. 
Author(s)
Jochen Einbeck (2006)
References
Aitchison, J. and Aitken, C.G.G. (1976). Multivariate binary discrimination by kernel method. Biometrika 63, 413-420.
Titterington, D. M. (1980). A comparative study of kernel-based density estimates for categorical data. Technometrics, 22, 259-268.
Examples
k<-6; 
dkern(1:k,4,k,0.99)   
# Kernel centered at the 4th component with a very small amount of smoothing.
## The function is currently defined as
function(x,y,k,lambda){
ifelse(y==x, lambda, (1-lambda)/(k-1))
  }
[Package npmlreg version 0.46-5 Index]