nest_summarise {nplyr} | R Documentation |
Summarise each group in nested data frames to fewer rows
Description
nest_summarise()
creates a new set of nested data frames. Each will have
one (or more) rows for each combination of grouping variables; if there are
no grouping variables, the output will have a single row summarising all
observations in .nest_data
. Each nested data frame will contain one column
for each grouping variable and one column for each of the summary statistics
that you have specified.
nest_summarise()
and nest_summarize()
are synonyms.
Usage
nest_summarise(.data, .nest_data, ..., .groups = NULL)
nest_summarize(.data, .nest_data, ..., .groups = NULL)
Arguments
.data |
A data frame, data frame extension (e.g., a tibble), or a lazy data frame (e.g., from dbplyr or dtplyr). |
.nest_data |
A list-column containing data frames |
... |
Name-value pairs of functions. The name will be the name of the variable in the result. The value can be:
|
.groups |
Grouping structure of the
result. Refer to |
Details
nest_summarise()
is largely a wrapper for dplyr::summarise()
and
maintains the functionality of summarise()
within each nested data frame.
For more information on summarise()
, please refer to the documentation in
dplyr
.
Value
An object of the same type as .data
. Each object in the column .nest_data
will usually be of the same type as the input. Each object in .nest_data
has
the following properties:
The rows come from the underlying
group_keys()
The columns are a combination of the grouping keys and the summary expressions that you provide.
The grouping structure is controlled by the
.groups
argument, the output may be another grouped_df, a tibble, or a rowwise data frame.Data frame attributes are not preserved, because
nest_summarise()
fundamentally creates a new data frame for each object in.nest_data
.
See Also
Other single table verbs:
nest_arrange()
,
nest_filter()
,
nest_mutate()
,
nest_rename()
,
nest_select()
,
nest_slice()
Examples
gm_nest <- gapminder::gapminder %>% tidyr::nest(country_data = -continent)
# a summary applied to an ungrouped tbl returns a single row
gm_nest %>%
nest_summarise(
country_data,
n = n(),
median_pop = median(pop)
)
# usually, you'll want to group first
gm_nest %>%
nest_group_by(country_data, country) %>%
nest_summarise(
country_data,
n = n(),
median_pop = median(pop)
)