testmz {npcure} | R Documentation |
Test of Maller-Zhou
Description
This function carries out the nonparametric test of Maller and Zhou (1992).
Usage
testmz(t, d, dataset)
Arguments
t |
If |
d |
If |
dataset |
An optional data frame in which the variables named in
|
Details
The function implements Maller and Zhou's (1992) method to
test the null hypothesis H_{0} : \tau_{F_{0}} > \tau_{G}
vs. H_{1} : \tau_{F_{0}} \leq \tau_{G}
, where \tau_{F_{0}}
and
\tau_{G}
are the supports of, respectively, the
distribution function of the survival time of the uncured and the
distribution function of the censoring time.
Value
An object of S3 class 'npcure'. Formally, a list of components:
type |
The constant character string c("test", "Maller-Zhou"). |
pvalue |
The p-value of the test. |
aux |
A list of components: |
Author(s)
Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]
References
Maller R. A., Zhou S. (1992). Estimating the proportion of immunes in a censored sample. Biometrika, 79: 731-739. https://doi.org/10.1093/biomet/79.4.731.
See Also
Examples
## Some artificial data
set.seed(123)
n <- 50
y <- qweibull(runif(n)*pweibull(2, shape = 2), shape = 2) ## True lifetimes
c <- qexp(runif(n)*pexp(2.5)) ## Censoring values
u <- runif(n)
## Probability of being susceptible is constantly equal to .5
t <- ifelse(u < .5, pmin(y, c), c) ## Observed times
d <- ifelse(u < .5, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(t = t, d = d)
## Maller-Zhou test
testmz(t, d, data)