generate_data {npcs} | R Documentation |
Generate the data.
Description
Generate the data from two simulation cases in Tian, Y., & Feng, Y. (2021).
Usage
generate_data(n = 1000, model.no = 1)
Arguments
n |
the generated sample size. Default = 1000. |
model.no |
the model number in Tian, Y., & Feng, Y. (2021). Can be 1 or 2. Default = 1. |
Value
A list with two components x and y. x is the predictor matrix and y is the label vector.
References
Tian, Y., & Feng, Y. (2021). Neyman-Pearson Multi-class Classification via Cost-sensitive Learning. Submitted. Available soon on arXiv.
See Also
npcs
, predict.npcs
, error_rate
, and gamma_smote
.
Examples
set.seed(123, kind = "L'Ecuyer-CMRG")
train.set <- generate_data(n = 1000, model.no = 1)
x <- train.set$x
y <- train.set$y
[Package npcs version 0.1.1 Index]