kn {npcopTest} | R Documentation |
Estimation of the location of the change point in the copula
Description
Give an estimation of the abrupt change point in the copula when changes known occurs in the m.c.d.f.
Usage
kn(X,b)
Arguments
X |
a (non-empty) numeric matrix of |
b |
a single value or a vector of real values on (0,1] indicating the location(s) of the potential break time(s) in marginal cumulative distribution functions. You can specify |
Details
Estimation of the location of the abrupt change point in copula
Value
estimation of the location of the change point in the copula
Author(s)
Rohmer Tom
References
Tom Rohmer, Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions, Statistics & Probability Letters, Volume 119, December 2016, Pages 45-54, ISSN 0167-7152
Examples
#Example 1: Abrupt change in the m.c.d.f at time (known) m=50
# and in the copula at time k=50 (to be estimated)
n=100
m=50
mean1 = rep(0,2)
mean2 = rep(4,2)
sigma1 = matrix(c(1,0.2,0.2,1),2,2)
sigma2 = matrix(c(1,0.6,0.6,1),2,2)
X=matrix(rep(0,n*2),n,2)
for(j in 1:m) X[j,]=t(chol(sigma1))%*%rnorm(2) + mean1
for(j in (m+1):n) X[j,]=t(chol(sigma2))%*%rnorm(2) + mean2
kn(X,b=0.5)
#Example 2: Abrupt changes in the m.c.d.f at times (known) m=100 and 150
# and in the copula at time k=50 (to be estimated)
n=200
m1 = 100
m2 = 150
k = 50
sigma1 = matrix(c(1,0.2,0.2,1),2,2)
sigma2 = matrix(c(1,0.6,0.6,1),2,2)
mean1 = rep(0,2)
mean2 = rep(2,2)
mean3 = rep(4,2)
X=matrix(rep(0,n*2),n,2)
for(j in 1:k) X[j,]=t(chol(sigma1))%*%rnorm(2)
for(j in (k+1):n) X[j,]=t(chol(sigma2))%*%rnorm(2)
X[1:m1,]=X[1:m1,]+mean1
X[(m1+1):m2,]=X[(m1+1):m2,]+mean2
X[(m2+1):n,]=X[(m2+1):n,]+mean3
kn(X,b=c(0.5,0.75))