dfs_pick {npbr} | R Documentation |
Pickands frontier estimator
Description
This function is an implementation of the Pickands type estimator developed by Daouia, Florens and Simar (2010).
Usage
dfs_pick(xtab, ytab, x, k, rho, ci=TRUE)
Arguments
xtab |
a numeric vector containing the observed inputs |
ytab |
a numeric vector of the same length as |
x |
a numeric vector of evaluation points in which the estimator is to be computed. |
k |
a numeric vector of the same length as |
rho |
a numeric vector of the same length as |
ci |
a boolean, TRUE for computing the confidence interval. |
Details
Built on the ideas of Dekkers and de Haan (1989), Daouia et al. (2010) propose to estimate the frontier point \varphi(x)
by
\hat\varphi_{pick}(x) = \frac{z^x_{(n-k+1)} - z^x_{(n-2k+1)}}{2^{1/\rho_x} - 1} + z^x_{(n-k+1)}
from the transformed data \{z^{x}_i, \,i=1,\cdots,n\}
described in dfs_momt
, where \rho_x>0
is the same tail-index as in dfs_momt
.
If \rho_x
is known (typically equal to 2 if the joint density of data is believed to have sudden jumps at the frontier), then one can use the estimator \hat\varphi_{pick}(x)
in conjunction with the function kopt_momt_pick
which implements an automatic data-driven method for selecting the threshold k
.
In contrast, if \rho_x
is unknown, one could consider using the following two-step estimator:
First, estimate \rho_x
by the Pickands estimator \hat\rho_x
implemented in the function rho_momt_pick
by using the option method="pickands"
,
or by the moment estimator \tilde\rho_x
by utilizing the option method="moment"
.
Second, use the estimator \hat\varphi_{pick}(x)
, as if \rho_x
were known, by substituting the estimated value \hat\rho_x
or \tilde\rho_x
in place of \rho_x
.
The pointwise 95\%
confidence interval of the frontier function obtained from the asymptotic normality of \hat\varphi_{pick}(x)
is given by
[\hat\varphi_{pick}(x) \pm 1.96 \sqrt{v(\rho_x) / (2 k)} ( z^x_{(n-k+1)} - z^x_{(n-2k+1)})]
where v(\rho_x) =\rho^{-2}_x 2^{-2/\rho_x}/(2^{-1/\rho_x} -1)^4
.
Finally, to select the threshold k=k_n(x)
, one could use the automatic data-driven method of Daouia et al. (2010) implemented in the function
kopt_momt_pick
(option method="pickands"
).
Value
Returns a numeric vector with the same length as x
.
Note
As it is common in extreme-value theory, good results require a large sample size N_x
at each evaluation point x
. See also the note in kopt_momt_pick
.
Author(s)
Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar's Matlab code).
References
Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory, Bernoulli, 16, 1039-1063.
Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an extreme-value distribution, Annals of Statistics, 17, 1833-1855.
See Also
Examples
data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
length.out=100)
# 1. When rho[x] is known and equal to 2, we set:
rho<-2
# To determine the sample fraction k=k[n](x)
# in hat(varphi[pick])(x).
best_kn.1<-kopt_momt_pick(post$xinput, post$yprod,
x.post, method="pickands", rho=rho)
# To compute the frontier estimates and confidence intervals:
res.pick.1<-dfs_pick(post$xinput, post$yprod, x.post,
rho=rho, k=best_kn.1)
# Representation
plot(yprod~xinput, data=post, xlab="Quantity of labor",
ylab="Volume of delivered mail")
lines(x.post, res.pick.1[,1], lty=1, col="cyan")
lines(x.post, res.pick.1[,2], lty=3, col="magenta")
lines(x.post, res.pick.1[,3], lty=3, col="magenta")
## Not run:
# 2. rho[x] is unknown and estimated by
# the Pickands estimator hat(rho[x])
rho_pick<-rho_momt_pick(post$xinput, post$yprod,
x.post, method="pickands")
best_kn.2<-kopt_momt_pick(post$xinput, post$yprod,
x.post, method="pickands", rho=rho_pick)
res.pick.2<-dfs_pick(post$xinput, post$yprod, x.post,
rho=rho_pick, k=best_kn.2)
# 3. rho[x] is unknown independent of x and estimated
# by the (trimmed) mean of hat(rho[x])
rho_trimmean<-mean(rho_pick, trim=0.00)
best_kn.3<-kopt_momt_pick(post$xinput, post$yprod,
x.post, rho=rho_trimmean, method="pickands")
res.pick.3<-dfs_pick(post$xinput, post$yprod, x.post,
rho=rho_trimmean, k=best_kn.3)
# Representation
plot(yprod~xinput, data=post, col="grey", xlab="Quantity of labor",
ylab="Volume of delivered mail")
lines(x.post, res.pick.2[,1], lty=1, lwd=2, col="cyan")
lines(x.post, res.pick.2[,2], lty=3, lwd=4, col="magenta")
lines(x.post, res.pick.2[,3], lty=3, lwd=4, col="magenta")
plot(yprod~xinput, data=post, col="grey", xlab="Quantity of labor",
ylab="Volume of delivered mail")
lines(x.post, res.pick.3[,1], lty=1, lwd=2, col="cyan")
lines(x.post, res.pick.3[,2], lty=3, lwd=4, col="magenta")
lines(x.post, res.pick.3[,3], lty=3, lwd=4, col="magenta")
## End(Not run)