LocalPolyReg {npDoseResponse} | R Documentation |
The (partial) local polynomial regression.
Description
This function implements the (partial) local polynomial regression for estimating the conditional mean outcome function and its partial derivatives. We use higher-order local monomials for the treatment variable and first-order local monomials for the confounding variables.
Usage
LocalPolyReg(
Y,
X,
x_eval = NULL,
degree = 2,
deriv_ord = 1,
h = NULL,
b = NULL,
C_h = 7,
C_b = 3,
print_bw = TRUE,
kernT = "epanechnikov",
kernS = "epanechnikov"
)
Arguments
Y |
The input n-dimensional outcome variable vector. |
X |
The input n*(d+1) matrix. The first column of X stores the treatment/exposure variables, while the other d columns are confounding variables. |
x_eval |
The n*(d+1) matrix for evaluating the local polynomial regression
estimates. (Default: x_eval = NULL. Then, x_eval = |
degree |
Degree of local polynomials. (Default: degree = 2.) |
deriv_ord |
The order of the estimated derivative of the conditional mean outcome function. (Default: deriv_ord = 1.) |
h |
The bandwidth parameter for the treatment/exposure variable. (Default: h = NULL. Then, the rule-of-thumb bandwidth selector in Eq. (A1) of Yang and Tschernig (1999) is used with additional scaling factors C_h.) |
b |
The bandwidth vector for the confounding variables. (Default: b = NULL. Then, the rule-of-thumb bandwidth selector in Eq. (A1) of Yang and Tschernig (1999) is used with additional scaling factors C_b.) |
C_h |
The scaling factor for the rule-of-thumb bandwidth parameter |
C_b |
The scaling factor for the rule-of-thumb bandwidth vector |
print_bw |
The indicator of whether the current bandwidth parameters should be printed to the console. (Default: print_bw = TRUE.) |
kernT , kernS |
The names of kernel functions for the treatment/exposure variable and confounding variables. (Default: kernT = "epanechnikov", kernS = "epanechnikov".) |
Value
The estimated conditional mean outcome function or its partial
derivatives evaluated at points x_eval
.
Author(s)
Yikun Zhang, yikunzhang@foxmail.com
References
Zhang, Y., Chen, Y.-C., and Giessing, A. (2024) Nonparametric Inference on Dose-Response Curves Without the Positivity Condition. https://arxiv.org/abs/2405.09003.
Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and its Applications. Chapman & Hall/CRC.
Examples
library(parallel)
set.seed(123)
n <- 300
S2 <- cbind(2 * runif(n) - 1, 2 * runif(n) - 1)
Z2 <- 4 * S2[, 1] + S2[, 2]
E2 <- 0.2 * runif(n) - 0.1
T2 <- cos(pi * Z2^3) + Z2 / 4 + E2
Y2 <- T2^2 + T2 + 10 * Z2 + rnorm(n, mean = 0, sd = 1)
X2 <- cbind(T2, S2)
t_qry2 = seq(min(T2) + 0.01, max(T2) - 0.01, length.out = 100)
chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
if (nzchar(chk) && chk == "TRUE") {
# use 2 cores in CRAN/Travis/AppVeyor
num_workers <- 2L
} else {
# use all cores in devtools::test()
num_workers <- parallel::detectCores()
}
Y_est2 = LocalPolyReg(Y2, X2, x_eval = NULL, degree = 2, deriv_ord = 0,
h = NULL, b = NULL, C_h = 7, C_b = 3, print_bw = TRUE,
kernT = "epanechnikov", kernS = "epanechnikov")