DerivEffectBoot {npDoseResponse} | R Documentation |
Nonparametric bootstrap inference on the derivative effect via our localized derivative estimator.
Description
This function implements the nonparametric bootstrap inference on the derivative of a dose-response curve via our localized derivative estimator.
Usage
DerivEffectBoot(
Y,
X,
t_eval = NULL,
boot_num = 500,
alpha = 0.95,
h_bar = NULL,
kernT_bar = "gaussian",
h = NULL,
b = NULL,
C_h = 7,
C_b = 3,
print_bw = TRUE,
degree = 2,
deriv_ord = 1,
kernT = "epanechnikov",
kernS = "epanechnikov",
parallel = TRUE,
cores = 6
)
Arguments
Y |
The input n-dimensional outcome variable vector. |
X |
The input n*(d+1) matrix. The first column of X stores the treatment/exposure variables, while the other d columns are confounding variables. |
t_eval |
The m-dimensional vector for evaluating the derivative. (Default:
t_eval = NULL. Then, t_eval = |
boot_num |
The number of bootstrapping times. (Default: boot_num = 500.) |
alpha |
The confidence level of both the uniform confidence band and pointwise confidence interval. (Default: alpha = 0.95.) |
h_bar |
The bandwidth parameter for the Nadaraya-Watson conditional CDF estimator. (Default: h_bar = NULL. Then, the Silverman's rule of thumb is applied. See Chen et al. (2016) for details.) |
kernT_bar |
The name of the kernel function for the Nadaraya-Watson conditional CDF estimator. (Default: kernT_bar = "gaussian".) |
h , b |
The bandwidth parameters for the treatment/exposure variable and confounding variables in the local polynomial regression. (Default: h = NULL, b = NULL. Then, the rule-of-thumb bandwidth selector in Eq. (A1) of Yang and Tschernig (1999) is used with additional scaling factors C_h and C_b, respectively.) |
C_h , C_b |
The scaling factors for the rule-of-thumb bandwidth parameters. |
print_bw |
The indicator of whether the current bandwidth parameters should be printed to the console. (Default: print_bw = TRUE.) |
degree |
Degree of local polynomials. (Default: degree = 2.) |
deriv_ord |
The order of the estimated derivative of the conditional mean outcome function. (Default: deriv_ord = 1. It shouldn't be changed in most cases.) |
kernT , kernS |
The names of kernel functions for the treatment/exposure variable and confounding variables. (Default: kernT = "epanechnikov", kernS = "epanechnikov".) |
parallel |
The indicator of whether the function should be parallel executed. (Default: parallel = TRUE.) |
cores |
The number of cores for parallel execution. (Default: cores = 6.) |
Value
A list that contains four elements.
theta_est |
The estimated derivative of the dose-response curve evaluated at points |
theta_est_boot |
The estimated derivative of the dose-response curve evaluated at points |
theta_alpha |
The width of the uniform confidence band. |
theta_alpha_var |
The widths of the pointwise confidence bands at evaluation points |
Author(s)
Yikun Zhang, yikunzhang@foxmail.com
References
Zhang, Y., Chen, Y.-C., and Giessing, A. (2024) Nonparametric Inference on Dose-Response Curves Without the Positivity Condition. https://arxiv.org/abs/2405.09003.
Examples
set.seed(123)
n <- 300
S2 <- cbind(2 * runif(n) - 1, 2 * runif(n) - 1)
Z2 <- 4 * S2[, 1] + S2[, 2]
E2 <- 0.2 * runif(n) - 0.1
T2 <- cos(pi * Z2^3) + Z2 / 4 + E2
Y2 <- T2^2 + T2 + 10 * Z2 + rnorm(n, mean = 0, sd = 1)
X2 <- cbind(T2, S2)
t_qry2 = seq(min(T2) + 0.01, max(T2) - 0.01, length.out = 100)
chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
if (nzchar(chk) && chk == "TRUE") {
# use 2 cores in CRAN/Travis/AppVeyor
num_workers <- 2L
} else {
# use all cores in devtools::test()
num_workers <- parallel::detectCores()
}
# Increase bootstrap times "boot_num" to a larger integer in practice
theta_boot2 = DerivEffectBoot(Y2, X2, t_eval = t_qry2, boot_num = 3, alpha = 0.95,
h_bar = NULL, kernT_bar = "gaussian", h = NULL,
b = NULL, C_h = 7, C_b = 3, print_bw = FALSE,
degree = 2, deriv_ord = 1, kernT = "epanechnikov",
kernS = "epanechnikov", parallel = TRUE,
cores = num_workers)