nortestARMA {nortestARMA} | R Documentation |
Neyman Smooth Tests of Normality for the Errors of ARMA Models
Description
Test statistics are computed to check normality in autoregressive moving-average (ARMA) time series models, adopting the smooth test paradigm. The mean of the ARMA process can be assumed known or unknown. A data-driven order of the family of the BIC type is given.
Usage
nortestARMA(residuals, sig2hat, d = 2)
Arguments
residuals |
Vector of residuals of a fitted ARMA |
sig2hat |
Estimated variance of the i.i.d. errors of
the ARMA |
d |
Paramater used in the choice of the order of the Legendre polynomial. |
Details
In the 2004 paper, the mean \mu
of the ARMA process is supposed to be known
and thus should not be estimated. In that case, the residuals should be
computed without estimation of the mean \mu
. Moreover, these
residuals should not be centered before calling the nortestARMA
function because there might be some asymptotic impact of centering the
residuals (see Serfling (1980) page 73, case (iv)). In the 2016 paper, we considered that the mean \mu
is
unknown. Thus in that case, the residuals should be computed taking into
account the estimation of \mu
. Moreover, we have showed that there
is no asymptotic impact of the centering of the residuals (see Yu (2007)). Nevertheless,
in that case, centering the residuals could be a good idea for small
sample sizes.
Value
List with the following components:
RKsdest |
Values of the test statistics |
Koptsdest |
Optimal value |
pvalsdest |
|
RKsdmuest |
Values of the test statistics |
Koptsdmuest |
Optimal value |
pvalsdmuest |
|
Author(s)
Duchesne P., Lafaye de Micheaux P.
References
Ducharme G., Lafaye de Micheaux P., (2004). Goodness-of-fit tests of normality for the innovations in ARMA models. Journal of Time Series Analysis 25 (3), 373–395.
Duchesne P., Lafaye de Micheaux P., Tagne J. (2016). Neyman Smooth Test of Normality for ARMA Time Series Models with Unknown Mean. Submitted.
Piggott J. L., (1980). The use o f Box-Jenkins modelling for the forecasting of daily gas demand. Paper presented to the Royal Statistical Society.
Shea B. L., (1987). Estimation of Multivariate Time Series. Journal of Time Series Analysis 8 (1), 95–109.
Examples
#####################################
# Example in Ducharme et al. (2004) #
#####################################
data(Piggott)
ts.plot(Piggott$temp, main = "Temperature Series")
ts.plot(Piggott$wind.trans, main = "Transformed Wind Speed Series")
# The differenciated series Y_t - Y_{t - 1} of length 366 (taking Y_0 = 0)
diff.temp <- c(Piggott$temp[1], diff(Piggott$temp))
pacf(diff.temp)
# Below, we assumed that the mean E(Y_t) is known and is equal to 0.
fit.MA4 <- arima(diff.temp, order = c(0,0,4), include.mean = FALSE)
resfit.MA4 <- residuals(fit.MA4)
sig2fit.MA4 <- fit.MA4$sigma2
# The residuals should not be centered.
nortestARMA(resfit.MA4, sig2fit.MA4, d = 2)
# Note: In Ducharme et al. (2004), the data were analyzed using the
# G13DCF routine in NAG.
# This routine gave us slightly different results.
# We obtained the following values:
# ITERATION NUMBER = 9
# ESTIMATED CONDITION NUMBER OF HESSIAN MATRIX = 0.181E+01
# NUMBER OF LIKELIHOOD EVALUATIONS MADE SO FAR = 82
# VALUE OF LOG LIKELIHOOD FUNCTION = -0.68515E+03
# NORM OF GRADIENT VECTOR = 0.12052E-03
# MA PARAMETERS : 0.0715894141 -0.296819534 -0.149662304 -0.19482046
# VARIANCE : 2.47466874
# For reproducibility purpose, the non centered residuals returned
# by this routine have been included in the current package in the
# 'resid.temp' object. To obtain exactly the same results as in the
# original 2004 article, one can thus issue the following commands:
sig2NAG <- 2.47466874
nortestARMA(resid.temp, sig2NAG, d = 2)
#####################################
# Example in Duchesne et al. (2016) #
#####################################
data(potato)
plot(potato, type = "l")
# First difference
potatoe.yield.diff <- diff(potato$potatoeyield)
mean(potatoe.yield.diff)
potatoe.yield.diff.centered <- scale(potatoe.yield.diff, scale = FALSE)
n <- length(potatoe.yield.diff.centered)
ts.plot(potatoe.yield.diff.centered)
acf2(potatoe.yield.diff.centered)
# ---------------------------------------
# ------------- Fitting an AR(1) --------
# ---------------------------------------
( fit.AR1 <- arima(potatoe.yield.diff.centered, order = c(1, 0, 0) ,
method= 'ML', include.mean = TRUE) )
( fit.AR1.wo.mean <- arima(potatoe.yield.diff.centered, order = c(1, 0, 0) ,
method= 'ML', include.mean = FALSE) )
resfit.AR1 <- residuals(fit.AR1)
sig2fit.AR1 <- fit.AR1$sigma2
resfit.AR1.centered <- resfit.AR1 - mean(resfit.AR1)
nortestARMA(resfit.AR1.centered, sig2fit.AR1, d = 2)
# Using the (2014) approach where the residuals have been
# computed after estimating the mean (by first removing the average of the
# observations), and doing as if the mean had not
# been estimated and were known (include.mean = FALSE).
# Note that if Y_t = a + bt + X_t for example, differenciating
# will not make the true mean of the differenciated series to be 0.
resfit.AR1.wo.mean <- residuals(fit.AR1.wo.mean)
sig2fit.AR1.wo.mean <- fit.AR1.wo.mean$sigma2
nortestARMA(resfit.AR1.wo.mean, sig2fit.AR1.wo.mean, d = 2)
hist(resfit.AR1/sqrt(sig2fit.AR1))
Box.test(resfit.AR1.centered, lag = 3, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 6, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 12, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 14, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 20, type = "Ljung-Box", fitdf = 1)
acf2(resfit.AR1)
# ---------------------------------------------------------
# ------------- Fitting an AR(1) with intervention --------
# ---------------------------------------------------------
matX.AOdsARI11 <- function(n, phi) {
X <- matrix(0, nrow = n + 2, ncol = n)
oneminusphi <- c(1, -1 - phi, phi)
for (i in 1:n) X[i:(i + 2), i] <- oneminusphi
X <- X[1:n, ]
return(X)
}
findAOdsARI11 <- function(residuals, X, phi) {
n <- length(residuals)
oneminusphi <- c(1, -1 - phi, phi)
tau2 <- sum(oneminusphi ^ 2)
sigma2 <- mean(residuals ^ 2)
res <- matrix(0, nrow = n, ncol = 2)
for (t in 1:n) {
colXt <- X[, t]
fitt <- lm(residuals ~ colXt - 1)
omegaAt <- coef(fitt)
res[t, 1] <- sqrt(tau2) * omegaAt / sqrt(sigma2)
res[t, 2] <- omegaAt
}
return(res)
}
findAOandIOdsARI11 <- function(residuals, X, phi) {
n <- length(residuals)
oneminusphi <- c(1, -1 - phi, phi)
tau2 <- sum(oneminusphi ^ 2)
sigma2 <- mean(residuals ^ 2)
res <- matrix(0, nrow = n, ncol = 3)
for (t in 1:n) {
colXt <- X[, t]
fitt <- lm(residuals ~ colXt - 1)
omegaAt <- coef(fitt)
res[t, 1] <- sqrt(tau2) * omegaAt / sqrt(sigma2)
res[t, 2] <- omegaAt
omegaIt <- residuals[t] / sqrt(sigma2)
res[t, 3] <- omegaIt
}
return(res)
}
phi <- coef(fit.AR1)[1]
matX <- matX.AOdsARI11(n, phi)
findAO <- findAOdsARI11(resfit.AR1, matX, phi)
findAOandIO <- findAOandIOdsARI11(resfit.AR1, matX, phi)
omega <- rep(0, length(potato$potatoeyield))
findAOandIO[44, 2]
omega[44 + 1] <- -93.8998780 # warning: the residuals in 'resfit.AR1' are in the diff series
potatoe.yieldAO <- potato$potatoeyield - omega
plot(potato, type = "l", xlab = "year", ylab = "Hundredweight - Cwt")
lines(potato$year, potatoe.yieldAO, type = "l", lty = 2, col = "blue")
title('Original time series and with an intervention')
potatoe.yield.diffAO <- diff(potatoe.yieldAO)
mean(potatoe.yield.diffAO)
potatoe.yield.diff.centeredao <- potatoe.yield.diffAO - mean(potatoe.yield.diffAO)
n <- length(potatoe.yield.diff.centeredao)
ts.plot(potatoe.yield.diff.centered)
ts.plot(potatoe.yield.diff.centeredao)
plot(1:length(potatoe.yield.diff.centered), potatoe.yield.diff, type = "l")
lines(1:length(potatoe.yield.diff.centeredao), potatoe.yield.diffAO,
type = "l", lty = 2)
acf2(potatoe.yield.diff.centeredao)
( fit.AR1 <- arima(potatoe.yield.diff.centeredao, order = c(1,0,0) ,
method= 'ML', include.mean = TRUE) )
( fit.AR1.wo.mean <- arima(potatoe.yield.diff.centeredao, order = c(1,0,0) ,
method= 'ML', include.mean = FALSE) )
resfit.AR1 <- residuals(fit.AR1)
resfit.AR1.centered <- resfit.AR1 - mean(resfit.AR1)
sig2fit.AR1 <- fit.AR1$sigma2
hist(resfit.AR1/sqrt(sig2fit.AR1))
acf2(resfit.AR1)
phi <- coef(fit.AR1)[1]
nortestARMA(resfit.AR1.centered, sig2fit.AR1, d = 2)
# Using the (2014) approach where the residuals have been
# computed after estimating the mean (by first removing the average of the
# observations), and doing as if the mean had not
# been estimated and were known (include.mean = FALSE).
resfit.AR1.wo.mean <- residuals(fit.AR1.wo.mean)
sig2fit.AR1.wo.mean <- fit.AR1.wo.mean$sigma2
nortestARMA(resfit.AR1.wo.mean, sig2fit.AR1.wo.mean, d = 2)
Box.test(resfit.AR1.centered, lag = 3, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 6, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 12, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 14, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 20, type = "Ljung-Box", fitdf = 1)
# --------------------------------------
# ------------- fitting an AR(2) -------
# --------------------------------------
( fit.AR2 <- arima(potatoe.yield.diff.centeredao, order = c(2, 0, 0),
method= 'ML', include.mean = TRUE) )
( fit.AR2.wo.mean <- arima(potatoe.yield.diff.centeredao, order = c(2, 0, 0),
method= 'ML', include.mean = FALSE) )
resfit.AR2 <- residuals(fit.AR2)
sig2fit.AR2 <- fit.AR2$sigma2
hist( resfit.AR2/sqrt(sig2fit.AR2) )
acf2(resfit.AR2)
resfit.AR2.centered <- resfit.AR2 - mean(resfit.AR2)
nortestARMA(resfit.AR2.centered, sig2fit.AR2, d = 2)
# Using the (2014) approach where the residuals have been
# computed after estimating the mean (by first removing the average of the
# observations), and doing as if the mean had not
# been estimated and were known (include.mean = FALSE).
resfit.AR2.wo.mean <- residuals(fit.AR2.wo.mean)
sig2fit.AR2.wo.mean <- fit.AR2.wo.mean$sigma2
nortestARMA(resfit.AR2.wo.mean, sig2fit.AR2, d = 2)
Box.test(resfit.AR2.centered, lag = 3, type= "Ljung-Box", fitdf = 2)
Box.test(resfit.AR2.centered, lag = 6, type= "Ljung-Box", fitdf = 2)
Box.test(resfit.AR2.centered, lag = 12, type= "Ljung-Box", fitdf = 2)
Box.test(resfit.AR2.centered, lag = 14, type= "Ljung-Box", fitdf = 2)
Box.test(resfit.AR2.centered, lag = 20, type= "Ljung-Box", fitdf = 2)