simul.mp {normalp} | R Documentation |
Simulation planning for the parameters of an exponential power distribution
Description
This function performs a Monte Carlo simulation to compare least square estimators and
Maximum Likelihood estimators for the parameters of an exponential power distribution.
For each sample, it calls the function paramp
, returning the arithmetic
means, the max-likelihood estimates of the location parameter, the standard deviations,
the max-likelihood estimates of the scale parameter and the estimates of the shape parameter.
Usage
simul.mp(n, m, mu=0, sigmap=1, p=2)
Arguments
n |
Sample size. |
m |
Number of samples. |
mu |
Value of the location parameter. |
sigmap |
Value of the scale parameter. |
p |
the shape parameter. |
Value
This function is useful to compare several kinds of estimators.
It returns an object of class "simul.mp"
, a list containing the following components:
dat |
A matrix |
table |
A matrix reporting the means and the variances of the values of the five estimators. |
Author(s)
Angelo M. Mineo
References
Mineo, A.M. (1995) Stima dei parametri di intensit\'a e di scala di una curva normale di ordine p (p incognito). Annali della Facolt\‘a di Economia dell’Universit\'a di Palermo (Area Statistico-Matematica), pp. 125-159.
Examples
## Simulation plan for 100 samples of size 20, with mu=0, sigmap=1, p=3.
simul.mp(20,100,mu=0,sigmap=1,p=3)