simul.lmp {normalp} | R Documentation |
Simulation planning for a linear regression model with errors distributed as an exponential power distribution
Description
This function performs a Monte Carlo simulation to compare least squares estimators and Maximum Likelihood estimators for a linear regression model with errors distributed as an exponential power distribution. The regressors are drawn from an Uniform distribution.
Usage
simul.lmp(n, m, q, data, int=0, sigmap=1, p=2, lp=FALSE)
Arguments
n |
Sample size. |
m |
Number of samples. |
q |
Number of regressors. |
data |
A vector of coefficients. |
int |
Value of the intercept. |
sigmap |
The scale parameter. |
p |
The shape parameter. |
lp |
Logical. If |
Value
The function simul.lmp
returns an object of class "simul.lmp"
. A component of this object
is a table of means and variances of the m
estimates of the regression coefficients and
of the scale paramenter \sigma_p
.
The summary
shows this table and the arguments of the simulation plan. The function plot
returns the histograms of the computed estimates.
Author(s)
Angelo M. Mineo
References
Mineo, A.M. (1995) Stima dei parametri di regressione lineare semplice quando gli errori seguono una distribuzione normale di ordine p (p incognito). Annali della Facolt\‘a di Economia dell’Universit\'a di Palermo (Area Statistico-Matematica), pp. 161-186.
Examples
## Simulation of 50 samples of size 10 for a linear regression model with 1 regressor.
simul.lmp(10,50,1,data=1.5,int=1,sigmap=1,p=3,lp=FALSE)