rnormp {normalp} | R Documentation |
Pseudo-random numbers from an exponential power distribution
Description
Generation of pseudo-random numbers from an exponential power distribution
with location parameter mu
, scale parameter sigmap
and shape parameter p
.
Usage
rnormp(n, mu = 0, sigmap = 1, p = 2, method = c("def", "chiodi"))
Arguments
n |
Number of observations. |
mu |
Vector of location parameters. |
sigmap |
Vector of scale parameters. |
p |
Shape parameter. |
method |
If is set to the default method " |
Details
If mu
, sigmap
or p
are not specified they assume the default values 0, 1 and 2,
respectively.
The exponential power distribution has density function
f(x) = \frac{1}{2 p^{(1/p)} \Gamma(1+1/p) \sigma_p} e^{- \frac{|x - \mu|^p}{p \sigma_p^p}}
where \mu
is the location parameter, \sigma_p
the scale parameter and p
the
shape parameter.
When p=2
the exponential power distribution becomes the Normal Distribution, when
p=1
the exponential power distribution becomes the Laplace Distribution, when
p\rightarrow\infty
the exponential power distribution becomes the Uniform Distribution.
Value
rnormp
gives a vector of n
pseudo-random numbers from an exponential power distribution.
Author(s)
Angelo M. Mineo
References
Chiodi, M. (1986) Procedures for generating pseudo-random numbers from a normal distribution of order p (p>1), Statistica Applicata, 1, pp. 7-26.
Marsaglia, G. and Bray, T.A. (1964) A convenient method for generating normal variables, SIAM rev., 6, pp. 260-264.
See Also
Normal
for the Normal distribution, Uniform
for the Uniform distribution,
Special
for the Gamma function and .Random.seed
for the random number generation.
Examples
## Generate a random sample x from an exponential power distribution
## At the end we have the histogram of x
x <- rnormp(1000, 1, 2, 1.5)
hist(x, main="Histogram of the random sample")