| pnormp {normalp} | R Documentation |
Probability function of an exponential power distribution
Description
Probability function for the exponential power distribution with location parameter
mu, scale parameter sigmap and shape parameter p.
Usage
pnormp(q, mu=0, sigmap=1, p=2, lower.tail=TRUE, log.pr=FALSE)
Arguments
q |
Vector of quantiles. |
mu |
Vector of location parameters. |
sigmap |
Vector of scale parameters. |
p |
Shape parameter. |
lower.tail |
Logical; if TRUE (default), probabilities are |
log.pr |
Logical; if TRUE, probabilities |
Details
If mu, sigmap or p are not specified they assume the default values 0, 1 and 2,
respectively.
The exponential power distribution has density function
f(x) = \frac{1}{2 p^{(1/p)} \Gamma(1+1/p) \sigma_p} e^{-\frac{|x - \mu|^p}{p \sigma_p^p}}
where \mu is the location parameter, \sigma_p the scale parameter and p the
shape parameter.
When p=2 the exponential power distribution becomes the Normal Distribution, when
p=1 the exponential power distribution becomes the Laplace Distribution, when
p\rightarrow\infty the exponential power distribution becomes the Uniform Distribution.
Value
pnormp gives the probability of an exponential power distribution.
Author(s)
Angelo M. Mineo
See Also
Normal for the Normal distribution, Uniform for the Uniform distribution, and Special for the Gamma function.
Examples
## Compute the distribution function for a vector x with mu=0, sigmap=1 and p=1.5
## At the end we have the graph of the exponential power distribution function with p=1.5.
x <- c(-1, 1)
pr <- pnormp(x, p=1.5)
print(pr)
plot(function(x) pnormp(x, p=1.5), -4, 4,
main = "Exponential Power Distribution Function (p=1.5)", ylab="F(x)")