pnormp {normalp} | R Documentation |
Probability function of an exponential power distribution
Description
Probability function for the exponential power distribution with location parameter
mu
, scale parameter sigmap
and shape parameter p
.
Usage
pnormp(q, mu=0, sigmap=1, p=2, lower.tail=TRUE, log.pr=FALSE)
Arguments
q |
Vector of quantiles. |
mu |
Vector of location parameters. |
sigmap |
Vector of scale parameters. |
p |
Shape parameter. |
lower.tail |
Logical; if TRUE (default), probabilities are |
log.pr |
Logical; if TRUE, probabilities |
Details
If mu
, sigmap
or p
are not specified they assume the default values 0, 1 and 2,
respectively.
The exponential power distribution has density function
f(x) = \frac{1}{2 p^{(1/p)} \Gamma(1+1/p) \sigma_p} e^{-\frac{|x - \mu|^p}{p \sigma_p^p}}
where \mu
is the location parameter, \sigma_p
the scale parameter and p
the
shape parameter.
When p=2
the exponential power distribution becomes the Normal Distribution, when
p=1
the exponential power distribution becomes the Laplace Distribution, when
p\rightarrow\infty
the exponential power distribution becomes the Uniform Distribution.
Value
pnormp
gives the probability of an exponential power distribution.
Author(s)
Angelo M. Mineo
See Also
Normal
for the Normal distribution, Uniform
for the Uniform distribution, and Special
for the Gamma function.
Examples
## Compute the distribution function for a vector x with mu=0, sigmap=1 and p=1.5
## At the end we have the graph of the exponential power distribution function with p=1.5.
x <- c(-1, 1)
pr <- pnormp(x, p=1.5)
print(pr)
plot(function(x) pnormp(x, p=1.5), -4, 4,
main = "Exponential Power Distribution Function (p=1.5)", ylab="F(x)")