lmp {normalp} | R Documentation |
Fitted linear model with exponential power distribution errors
Description
The function lmp
is used to fit linear model. It can be used when the errors are
distributed as an exponential power distribution.
Usage
lmp(formula, data, p)
Arguments
formula |
A symbolic description of the model to be fitted. |
data |
An optional data frame containing the variables in the model. By default the variables are taken from the environment. |
p |
The shape parameter. If specified, this function estimates the parameter by using the
|
Details
To evaluate the coefficients of the linear model, lmp
uses the maximum likelihood estimators.
This function can give some problems if the number of regressors is too high.
Value
The function lmp
returns an object of class
"lmp"
and "lm"
. The function
summary
print a summary of the results.
The generic accessor functions coefficients, effects, fitted.values
and
residuals
extract various useful features of the value returned by lmp
.
An object of class
"lmp"
is a list containing at least the following components:
coefficients |
A named vector of coefficients. |
residuals |
The residuals, that is responses minus fitted values. |
fitted.values |
The fitted values. |
rank |
The numeric rank of the fitted linear model. |
df.residual |
The residual degrees of freedom computed as in |
call |
The matched call. |
terms |
The |
p |
Estimate of the shape parameter computed on residuals. |
knp |
A logical parameter used by |
model |
The model frame used. |
iter |
If its value is 1 we have had a difficult convergence. |
Author(s)
Angelo M. Mineo
References
Mineo, A.M. (1995) Stima dei parametri di regressione lineare semplice quando gli errori seguono una distribuzione normale di ordine p (p incognito). Annali della Facolt\‘a di Economia dell’Universit\'a di Palermo (Area Statistico-Matematica), pp. 161-186.
Examples
e<-rnormp(n=100,mu=0,sigmap=4,p=3,method="d")
x<-runif(100)
y<-0.5+2*x+e
lmp(y~x)