par2nMm {norMmix} | R Documentation |
Transform Parameter Vector to Multivariate Normal Mixture
Description
Transforms the (numeric) parameter vector of our MLE parametrization of a multivariate
normal mixture model into the corresponding list
of
components determining the model. Additionally (partly redundantly), the
dimension p
and number of components k
need to be specified
as well.
Usage
par2nMm(par, p, k, model = c("EII","VII","EEI","VEI","EVI",
"VVI","EEE","VEE","EVV","VVV")
, name = sprintf("model = %s , components = %s", model, k)
)
Arguments
par |
the model parameter numeric vector. |
p |
dimension of data space, i.e., number of variables (aka “features”). |
k |
the number of mixture components, a positive integer. |
model |
a |
name |
Value
returns a list
with components
weight |
.. |
mu |
.. |
Sigma |
.. |
k |
.. |
dim |
.. |
See Also
This is the inverse function of nMm2par()
.
Examples
## TODO: Show to get the list, and then how to get a norMmix() object from the list
str(MW213)
# List of 6
# $ model : chr "VVV"
# $ mu : num [1:2, 1:2] 0 0 30 30
# $ Sigma : num [1:2, 1:2, 1:2] 1 3 3 11 3 6 6 13
# $ weight: num [1:2] 0.5 0.5
# $ k : int 2
# $ dim : int 2
# - attr(*, "name")= chr "#13 test VVV"
# - attr(*, "class")= chr "norMmix"
para <- nMm2par(MW213, model="EEE")
par2nMm(para, 2, 2, model="EEE")
[Package norMmix version 0.1-1 Index]