ellipsePts {norMmix} | R Documentation |
Compute Points on Bivariate Gaussian Confidence Ellipse
Description
From 2-dimensional mean vector mu
= \mu
and 2x2 covariance matrix
sigma
= \Sigma
, compute npoints
equi-angular points on
the 1-alpha
= 1-\alpha
confidence ellipse of bivariate
Gaussian (normal) distribution \mathcal{N}_2(\mu,\Sigma)
.
Usage
ellipsePts(mu, sigma, npoints, alpha = 0.05, r = sqrt(qchisq(1 - alpha, df = 2)))
Arguments
mu |
mean vector ( |
sigma |
2x2 |
npoints |
integer specifying the number of points to be computed. |
alpha |
confidence level such that the ellipse should contain 1-alpha of the mass. |
r |
radius of the ellipse, typically computed from |
Value
a numeric matrix of dimension npoints x 2
, containing the
x-y-coordinates of the ellipse points.
Note
This has been inspired by package mixtools's ellipse()
function.
Author(s)
Martin Maechler
Examples
xy <- ellipsePts(c(10, 100), sigma = cbind(c(4, 7), c(7, 28)), npoints = 20)
plot(xy, type = "b", col=2, cex=2,
main="ellipsePts(mu = (10,100), sigma, npoints = 20)")
points(10, 100, col=3, cex=3, pch=3)
text (10, 100, col=3, expression(mu == "mu"), adj=c(-.1, -.1))
stopifnot(is.matrix(xy), dim(xy) == c(20, 2))
[Package norMmix version 0.1-1 Index]