equilibrium {nopp} | R Documentation |
Nash Optimal Party Positions
Description
Nash Optimal Party Positions
Usage
equilibrium(start, model, data, tolerance = 1e-05, max.iter = 100,
coal = 0, alpha = 0, margin = NULL, fixed = NULL, gamma = 0,
boot = 0, MC = 0, self.var = "self", prox.var="prox",
position=NULL, votes=NULL, quadratic=TRUE, conf.level = 0.95)
Arguments
start |
initial party positions. Numerical vector. Optional. |
model |
the |
data |
the data set |
tolerance |
tolerance in the convergence of Nash equilibrium. Default |
max.iter |
max iteration to convergence in Nash equilibrium. Default |
coal |
a |
alpha |
the weight of coalition vote-share in party utility function. Default = 0. See Details. |
margin |
a |
fixed |
a |
gamma |
the weight among nash and fixed arty position. Default=0. See Details. |
boot |
number of boostrap replications. See Details. |
MC |
number of Monte Carlo replications. See Details. |
self.var |
|
prox.var |
|
position |
a named |
votes |
a named |
quadratic |
a logical value: if |
conf.level |
significant level for empirical Monte Carlo or bootstrap confidence intervals. |
Details
See vignette.
Value
an object of class nash.eq
Note
See the vignette for detailed explanations and other working examples.
Author(s)
Luigi Curini, Stefano M. Iacus
References
Adams, James F., Samuel Merrill III, and Bernard Grofman (2005). A Unified Theory of Party Competition. Cambridge: Cambridge University Press
Merrill, Samuel III, and James Adams (2001), Computing Nash Equilibria in Probabilistic, Multiparty Spatial Models with Nonpolicy Components, Political Analysis, 9, 347–61
Curini, L., and Iacus, S.M. (2017) Nash Optimal Party Positions: The nopp R Package, Journal of Statistical Software, 81(11), 1–25
See Also
See Also as plot.nash.eq
Examples
## Not run:
data(italy2006)
str(italy2006)
italy2006[1:2,1:14]
election <- set.data(italy2006 , shape="wide", choice="vote",
varying=c(5:14), sep="_")
str(election)
m <- mlogit(vote~prox+partyID | gov_perf+sex+age+education,
election, reflevel = "UL")
summary(m)
true.pos <- list(FI=7.59, UL=3.50, RC=1.95, AN=8.08, UDC=5.66)
true.votes <- list(FI=.24, UL=.40, RC=.10, AN=.18, UDC=.08)
# model 1: comparison against true votes and party positions
nash.eq <- equilibrium(model=m, data=election, pos=true.pos,
votes=true.votes)
nash.eq
par(mfrow=c(3,1))
plot(nash.eq)
par(mfrow=c(1,1))
# model 2: colation behaviours
coal1 <- list(FI=1, UL=2, RC=2, AN=1, UDC=1)
alpha1 <- list(FI=0.5, UL=0.5, RC=0.5, AN=0.5, UDC=0.5)
nash.eq <- equilibrium(model=m, data=election, coal=coal1,
alpha=alpha1)
nash.eq
# model 3: colation behaviours
coal1 <- list(FI=1, UL=2, RC=2, AN=1, UDC=1)
alpha1 <- list(FI=0.7, UL=0.8, RC=0.1, AN=0.5, UDC=0.9)
nash.eq <- equilibrium(model=m, data=election, coal=coal1,
alpha=alpha1)
nash.eq
# model 4: rivals tends to separate each other
nash.eq <- equilibrium(model=m, data=election, margin=list(FI="UL", UL="FI"))
nash.eq
# model 5: fixed position averaged with Nash equilibrium solution
nash.eq <- equilibrium(model=m, data=election, fixed=list(RC=1), gamma=0.2)
nash.eq
# model 6: rivals tends to separate each other with
# fixed position averaged with Nash equilibrium solution
nash.eq <- equilibrium(model=m, data=election,
margin=list(FI="UL", UL="FI"), fixed=list(RC=1), gamma=0.2)
nash.eq
# model 7: coalition and fixed position averaged with
# Nash equilibrium solution
coal1 <- list(FI=1, UL=2, RC=2, AN=1, UDC=1)
alpha1 <- list(FI=0.7, UL=0.8, RC=0.5, AN=0.5, UDC=0.5)
nash.eq <- equilibrium(model=m, data=election, coal=coal1,
alpha=alpha1, fixed=list(RC=1), gamma=0.2)
nash.eq
# model 8: Bootstrap analysis
set.seed(280715)
nash.eq <- equilibrium(model=m, data=election, boot=10)
nash.eq
# model 9: Monte Carlo simulation
set.seed(280715)
nash.eq <- equilibrium(model=m, data=election, MC=10)
nash.eq
## End(Not run)