controlInf {nonprobsvy} | R Documentation |
Control parameters for inference
Description
controlInf
constructs a list with all necessary control parameters
for statistical inference.
Usage
controlInf(
vars_selection = FALSE,
var_method = c("analytic", "bootstrap"),
rep_type = c("auto", "JK1", "JKn", "BRR", "bootstrap", "subbootstrap", "mrbbootstrap",
"Fay"),
bias_inf = c("union", "div"),
num_boot = 500,
bias_correction = FALSE,
alpha = 0.05,
cores = 1,
keep_boot,
pmm_exact_se = FALSE,
pi_ij
)
Arguments
vars_selection |
If |
var_method |
variance method. |
rep_type |
replication type for weights in the bootstrap method for variance estimation passed to |
bias_inf |
inference method in the bias minimization.
|
num_boot |
number of iteration for bootstrap algorithms. |
bias_correction |
if |
alpha |
Significance level, Default is 0.05. |
cores |
Number of cores in parallel computing. |
keep_boot |
Logical indicating whether statistics from bootstrap should be kept.
By default set to |
pmm_exact_se |
Logical value indicating whether to compute the exact
standard error estimate for |
pi_ij |
TODO, either matrix or |
Value
List with selected parameters.
See Also
nonprob()
– for fitting procedure with non-probability samples.