prob_cal {nomogramFormula} | R Documentation |
Calculate Probabilities
Description
Use Survival() function from 'rms' pacakge to calculate probabilities after lrm(), cph() or psm() regression. If you want to calculate lrm() probabilities, please leave linear.predictors be TRUE and times be missing. If you want to calculate cph() probabilites, please leave both linear.predictors and surv be TRUE.
Usage
prob_cal(reg, times, q, lp)
Arguments
reg |
regression results after lrm(), cph() or psm() in 'rms' package. |
times |
if you want to calculate probabilities for lrm() function, please left times missing. |
q |
quantile, for example 0.5 |
lp |
linear predictors |
Value
lieaner predictors and probabilities as a dataframe
Examples
set.seed(2018)
n <-2019
age <- rnorm(n,60,20)
sex <- factor(sample(c('female','male'),n,TRUE))
sex <- as.numeric(sex)
weight <- sample(50:100,n,replace = TRUE)
time <- sample(50:800,n,replace = TRUE)
units(time)="day"
death <- sample(c(1,0,0),n,replace = TRUE)
df <- data.frame(time,death,age,sex,weight)
library(rms) #needed for lrm(), cph() and psm()
ddist <- datadist(df)
oldoption <- options(datadist='ddist')
# lrm() function
f <- lrm(death~sex+age+weight,data=df,
linear.predictors = TRUE)
head(prob_cal(reg = f))
# cph() function
f <- cph(Surv(time,death)~sex+age+weight,data=df,
linear.predictors=TRUE,surv=TRUE)
head(prob_cal(reg = f,times = c(365,365*2)))
# psm() function
f <- psm(Surv(time,death)~sex+age+weight,data=df)
head(prob_cal(reg = f,times = c(365,365*2)))
[Package nomogramFormula version 1.2.0.0 Index]