noisyCE2-package {noisyCE2} | R Documentation |
Cross-Entropy Optimisation of Noisy Functions
Description
The package noisyCE2
implements the cross-entropy algorithm (Rubinstein and
Kroese, 2004) for the optimisation of unconstrained deterministic and noisy
functions through a highly flexible and customisable function which allows
user to define custom variable domains, sampling distributions, updating and
smoothing rules, and stopping criteria. Several built-in methods and settings
make the package very easy-to-use under standard optimisation problems.
Details
The package permits a noisy function to be maximised by means of the cross-entropy algorithm. Formally, problems in the form
\max_{x\in\Theta}\textbf{E}(f(x))
are tackled for a noisy function
f\colon\Theta\subseteq\textbf{R}^m\to\textbf{R}
.
Author(s)
Maintainer: Flavio Santi flavio.santi@univr.it (ORCID)
References
Bee M., G. Espa, D. Giuliani, F. Santi (2017) "A cross-entropy approach to the estimation of generalised linear multilevel models", Journal of Computational and Graphical Statistics, 26 (3), pp. 695-708. https://doi.org/10.1080/10618600.2016.1278003
Rubinstein, R. Y., and Kroese, D. P. (2004), The Cross-Entropy Method, Springer, New York. ISBN: 978-1-4419-1940-3
See Also
Useful links:
Report bugs at https://github.com/f-santi/noisyCE2/issues
Examples
# EXAMPLE 1
# The negative 4-dimensional paraboloid can be maximised as follows:
negparaboloid <- function(x) { -sum((x - (1:4))^2) }
sol <- noisyCE2(negparaboloid, domain = rep('real', 4))
# EXAMPLE 2
# The 10-dimensional Rosenbrock's function can be minimised as follows:
rosenbrock <- function(x) {
sum(100 * (tail(x, -1) - head(x, -1)^2)^2 + (head(x, -1) - 1)^2)
}
newvar <- type_real(
init = c(0, 2),
smooth = list(
quote(smooth_lin(x, xt, 1)),
quote(smooth_dec(x, xt, 0.7, 5))
)
)
sol <- noisyCE2(
rosenbrock, domain = rep(list(newvar), 10),
maximise = FALSE, N = 2000, maxiter = 10000
)
# EXAMPLE 3
# The negative 4-dimensional paraboloid with additive Gaussian noise can be
# maximised as follows:
noisyparaboloid <- function(x) { -sum((x - (1:4))^2) + rnorm(1) }
sol <- noisyCE2(noisyparaboloid, domain = rep('real', 4), stoprule = geweke(x))
# where the stopping criterion based on the Geweke's test has been adopted
# according to Bee et al. (2017).