symd_uni_an {noisemodel} | R Documentation |
Symmetric/dependent uniform attribute noise
Description
Introduction of Symmetric/dependent uniform attribute noise into a classification dataset.
Usage
## Default S3 method:
symd_uni_an(x, y, level, sortid = TRUE, ...)
## S3 method for class 'formula'
symd_uni_an(formula, data, ...)
Arguments
x |
a data frame of input attributes. |
y |
a factor vector with the output class of each sample. |
level |
a double in [0,1] with the noise level to be introduced. |
sortid |
a logical indicating if the indices must be sorted at the output (default: |
... |
other options to pass to the function. |
formula |
a formula with the output class and, at least, one input attribute. |
data |
a data frame in which to interpret the variables in the formula. |
Details
Symmetric/dependent uniform attribute noise corrupts (level
ยท100)% of the samples
in the dataset.
Their attribute values are replaced by random different ones between
the minimum and maximum of the domain of each attribute following a uniform distribution (for numerical
attributes) or choosing a random value (for nominal attributes).
Value
An object of class ndmodel
with elements:
xnoise |
a data frame with the noisy input attributes. |
ynoise |
a factor vector with the noisy output class. |
numnoise |
an integer vector with the amount of noisy samples per attribute. |
idnoise |
an integer vector list with the indices of noisy samples per attribute. |
numclean |
an integer vector with the amount of clean samples per attribute. |
idclean |
an integer vector list with the indices of clean samples per attribute. |
distr |
an integer vector with the samples per class in the original data. |
model |
the full name of the noise introduction model used. |
param |
a list of the argument values. |
call |
the function call. |
Note
Noise model adapted from the papers in References.
References
A. Petety, S. Tripathi, and N. Hemachandra. Attribute noise robust binary classification. In Proc. 34th AAAI Conference on Artificial Intelligence, pages 13897-13898, 2020.
See Also
sym_uni_an
, sym_cuni_an
, print.ndmodel
, summary.ndmodel
, plot.ndmodel
Examples
# load the dataset
data(iris2D)
# usage of the default method
set.seed(9)
outdef <- symd_uni_an(x = iris2D[,-ncol(iris2D)], y = iris2D[,ncol(iris2D)], level = 0.1)
# show results
summary(outdef, showid = TRUE)
plot(outdef)
# usage of the method for class formula
set.seed(9)
outfrm <- symd_uni_an(formula = Species ~ ., data = iris2D, level = 0.1)
# check the match of noisy indices
identical(outdef$idnoise, outfrm$idnoise)