sym_dran_ln {noisemodel} | R Documentation |
Symmetric double-random label noise
Description
Introduction of Symmetric double-random label noise into a classification dataset.
Usage
## Default S3 method:
sym_dran_ln(x, y, level, sortid = TRUE, ...)
## S3 method for class 'formula'
sym_dran_ln(formula, data, ...)
Arguments
x |
a data frame of input attributes. |
y |
a factor vector with the output class of each sample. |
level |
a double in [0,1] with the noise level to be introduced. |
sortid |
a logical indicating if the indices must be sorted at the output (default: |
... |
other options to pass to the function. |
formula |
a formula with the output class and, at least, one input attribute. |
data |
a data frame in which to interpret the variables in the formula. |
Details
Symmetric double-random label noise randomly selects (level
ยท100)% of the samples
in the dataset with independence of their class. Then, each of the original class labels is
flipped to one between two other random labels.
Value
An object of class ndmodel
with elements:
xnoise |
a data frame with the noisy input attributes. |
ynoise |
a factor vector with the noisy output class. |
numnoise |
an integer vector with the amount of noisy samples per class. |
idnoise |
an integer vector list with the indices of noisy samples. |
numclean |
an integer vector with the amount of clean samples per class. |
idclean |
an integer vector list with the indices of clean samples. |
distr |
an integer vector with the samples per class in the original data. |
model |
the full name of the noise introduction model used. |
param |
a list of the argument values. |
call |
the function call. |
Note
Noise model adapted from the papers in References.
References
A. Ghosh and A. S. Lan. Do we really need gold samples for sample weighting under label noise? In Proc. 2021 IEEE Winter Conference on Applications of Computer Vision, pages 3921-3930, 2021. doi:10.1109/WACV48630.2021.00397.
See Also
sym_hie_ln
, print.ndmodel
, summary.ndmodel
, plot.ndmodel
Examples
# load the dataset
data(iris2D)
# usage of the default method
set.seed(9)
outdef <- sym_dran_ln(x = iris2D[,-ncol(iris2D)], y = iris2D[,ncol(iris2D)], level = 0.1)
# show results
summary(outdef, showid = TRUE)
plot(outdef)
# usage of the method for class formula
set.seed(9)
outfrm <- sym_dran_ln(formula = Species ~ ., data = iris2D, level = 0.1)
# check the match of noisy indices
identical(outdef$idnoise, outfrm$idnoise)