mis_pre_ln {noisemodel} | R Documentation |
Misclassification prediction label noise
Description
Introduction of Misclassification prediction label noise into a classification dataset.
Usage
## Default S3 method:
mis_pre_ln(x, y, sortid = TRUE, ...)
## S3 method for class 'formula'
mis_pre_ln(formula, data, ...)
Arguments
x |
a data frame of input attributes. |
y |
a factor vector with the output class of each sample. |
sortid |
a logical indicating if the indices must be sorted at the output (default: |
... |
other options to pass to the function. |
formula |
a formula with the output class and, at least, one input attribute. |
data |
a data frame in which to interpret the variables in the formula. |
Details
Misclassification prediction label noise creates a Multi-Layer Perceptron (MLP) model from the dataset and relabels each sample with the class predicted by the classifier.
Value
An object of class ndmodel
with elements:
xnoise |
a data frame with the noisy input attributes. |
ynoise |
a factor vector with the noisy output class. |
numnoise |
an integer vector with the amount of noisy samples per class. |
idnoise |
an integer vector list with the indices of noisy samples. |
numclean |
an integer vector with the amount of clean samples per class. |
idclean |
an integer vector list with the indices of clean samples. |
distr |
an integer vector with the samples per class in the original data. |
model |
the full name of the noise introduction model used. |
param |
a list of the argument values. |
call |
the function call. |
Note
Noise model adapted from the papers in References.
References
Q. Wang, B. Han, T. Liu, G. Niu, J. Yang, and C. Gong. Tackling instance-dependent label noise via a universal probabilistic model. In Proc. 35th AAAI Conference on Artificial Intelligence, pages 10183-10191, 2021. url:https://ojs.aaai.org/index.php/AAAI/article/view/17221.
See Also
smam_bor_ln
, nlin_bor_ln
, print.ndmodel
, summary.ndmodel
, plot.ndmodel
Examples
# load the dataset
data(iris2D)
# usage of the default method
set.seed(9)
outdef <- mis_pre_ln(x = iris2D[,-ncol(iris2D)], y = iris2D[,ncol(iris2D)])
# show results
summary(outdef, showid = TRUE)
plot(outdef)
# usage of the method for class formula
set.seed(9)
outfrm <- mis_pre_ln(formula = Species ~ ., data = iris2D)
# check the match of noisy indices
identical(outdef$idnoise, outfrm$idnoise)