predict.nnGarrote {nnGarrote} | R Documentation |
Predictions for nnGarrote Object
Description
predict.nnGarrote
returns the prediction for nnGarrote for new data.
Usage
## S3 method for class 'nnGarrote'
predict(object, newx, ...)
Arguments
object |
An object of class nnGarrote |
newx |
A matrix with the new data. |
... |
Additional arguments for compatibility. |
Value
A matrix with the predictions of the nnGarrote
object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0)
nng.predictions <- predict(nng.out, newx=x.test)
nng.coef <- coef(nng.out)
[Package nnGarrote version 1.0.4 Index]