cv.nnGarrote {nnGarrote} | R Documentation |
Non-negative Garrote Estimator - Cross-Validation
Description
cv.nnGarrote
computes the non-negative garrote estimator with cross-validation.
Usage
cv.nnGarrote(
x,
y,
intercept = TRUE,
initial.model = c("LS", "glmnet")[1],
lambda.nng = NULL,
lambda.initial = NULL,
alpha = 0,
nfolds = 5,
verbose = TRUE
)
Arguments
x |
Design matrix. |
y |
Response vector. |
intercept |
Boolean variable to determine if there is intercept (default is TRUE) or not. |
initial.model |
Model used for the groups. Must be one of "LS" (default) or "glmnet". |
lambda.nng |
Shinkage parameter for the non-negative garrote. If NULL(default), it will be computed based on data. |
lambda.initial |
The shinkrage parameter for the "glmnet" regularization. |
alpha |
Elastic net mixing parameter for initial estimate. Should be between 0 (default) and 1. |
nfolds |
Number of folds for the cross-validation procedure. |
verbose |
Boolean variable to determine if console output for cross-validation progress is printed (default is TRUE). |
Value
An object of class cv.nnGarrote
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
coef.cv.nnGarrote
, predict.cv.nnGarrote
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- cv.nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0,
nfolds=5)
nng.predictions <- predict(nng.out, newx=x.test)
mean((nng.predictions-y.test)^2)/sigma.epsilon^2
coef(nng.out)