| InitStep {nmw} | R Documentation |
Initialization Step
Description
It receives parameters for the estimation and stores them into e environment.
Usage
InitStep(DataAll, THETAinit, OMinit, SGinit, LB, UB, Pred, METHOD)
Arguments
DataAll |
Data for all subjects. It should contain columns which |
THETAinit |
Theta initial values |
OMinit |
Omega matrix initial values |
SGinit |
Sigma matrix initial values |
LB |
Lower bounds for theta vector |
UB |
Upper bounds for theta vector |
Pred |
Prediction function name |
METHOD |
one of the estimation methods |
Details
Prediction function should return not only prediction values(F or IPRED) but also G (first derivative with respect to etas) and H (first derivative of Y with respect to epsilon).
For the "LAPL", prediction function should return second derivative with respect to eta also.
"INTERACTION" is TRUE for "COND" and "LAPL" option, and FALSE for "ZERO".
Omega matrix should be full block one.
Sigma matrix should be diagonal one.
Value
This does not return values, but stores necessary values into the environment e.
Author(s)
Kyun-Seop Bae <k@acr.kr>
References
NONMEM Users Guide
Examples
DataAll = Theoph
colnames(DataAll) = c("ID", "BWT", "DOSE", "TIME", "DV")
DataAll[,"ID"] = as.numeric(as.character(DataAll[,"ID"]))
nTheta = 3
nEta = 3
nEps = 2
THETAinit = c(2, 50, 0.1) # Initial estimate
OMinit = matrix(c(0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2), nrow=nEta, ncol=nEta)
OMinit
SGinit = diag(c(0.1, 0.1))
SGinit
LB = rep(0, nTheta) # Lower bound
UB = rep(1000000, nTheta) # Upper bound
FGD = deriv(~DOSE/(TH2*exp(ETA2))*TH1*exp(ETA1)/(TH1*exp(ETA1) - TH3*exp(ETA3))*
(exp(-TH3*exp(ETA3)*TIME)-exp(-TH1*exp(ETA1)*TIME)),
c("ETA1","ETA2","ETA3"),
function.arg=c("TH1", "TH2", "TH3", "ETA1", "ETA2", "ETA3", "DOSE", "TIME"),
func=TRUE, hessian=TRUE)
H = deriv(~F + F*EPS1 + EPS2, c("EPS1", "EPS2"), function.arg=c("F", "EPS1", "EPS2"), func=TRUE)
PRED = function(THETA, ETA, DATAi)
{
FGDres = FGD(THETA[1], THETA[2], THETA[3], ETA[1], ETA[2], ETA[3], DOSE=320, DATAi[,"TIME"])
Gres = attr(FGDres, "gradient")
Hres = attr(H(FGDres, 0, 0), "gradient")
if (e$METHOD == "LAPL") {
Dres = attr(FGDres, "hessian")
Res = cbind(FGDres, Gres, Hres, Dres[,1,1], Dres[,2,1], Dres[,2,2], Dres[,3,])
colnames(Res) = c("F", "G1", "G2", "G3", "H1", "H2", "D11", "D21", "D22", "D31", "D32", "D33")
} else {
Res = cbind(FGDres, Gres, Hres)
colnames(Res) = c("F", "G1", "G2", "G3", "H1", "H2")
}
return(Res)
}
######### First Order Approximation Method
InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, LB=LB, UB=UB,
Pred=PRED, METHOD="ZERO")
######### First Order Conditional Estimation with Interaction Method
InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, LB=LB, UB=UB,
Pred=PRED, METHOD="COND")
######### Laplacian Approximation with Interacton Method
InitStep(DataAll, THETAinit=THETAinit, OMinit=OMinit, SGinit=SGinit, LB=LB, UB=UB,
Pred=PRED, METHOD="LAPL")