meta_inla {nmaINLA} | R Documentation |
Fitting a pairwise meta-analysis model using INLA.
Description
meta_inla
fits a pairwise meta-analysis model using INLA
Usage
meta_inla(
datINLA,
fixed.par = c(0, 1000),
tau.prior = "uniform",
tau.par = c(0, 5),
type = "FE",
approach = "arm-level",
mreg = FALSE,
verbose = FALSE,
inla.strategy = "simplified.laplace",
improve.hyperpar.dz = 0.75,
correct = FALSE,
correct.factor = 10
)
Arguments
datINLA |
An object of |
fixed.par |
A numerical vector specifying the parameter of the normal prior density for mean treatment effect, first value is parameter for mean, second is for variance. |
tau.prior |
A string specifying the prior density for the heterogeneity standard deviation, options are 'uniform' for uniform prior and 'half-normal' for half-normal prior. |
tau.par |
A numerical vector specifying the parameter of the prior density for heterogenety stdev.
|
type |
A string indicating the type of the model, options are "FE", "RE". |
approach |
A string indicating the approach of the model, options are "summary-level", "arm-level" |
mreg |
Logical indicating whether covariate(s) should be incorporated to fit a
meta-regression model, default |
verbose |
Logical indicating whether the program should run in a verbose model, default |
inla.strategy |
A string specfying the strategy to use for the approximations of INLA;
one of 'gaussian', 'simplified.laplace' (default) or 'laplace', see |
improve.hyperpar.dz |
Step length in the standardized scale used in the construction of the grid, default 0.75,
see |
correct |
Logical Add correction for the Laplace approximation, default |
correct.factor |
Numerical Factor used in adjusting the correction factor if |
Details
The following model types are supported
-
FE
, fixed-effect model -
RE
, random effects model
Value
meta_inla
returns a meta_inla
object with components:
Examples
data('TBdat')
## Create the dataset suitable for INLA
TBdatINLA <- create_INLA_dat_pair(TBdat$TRT, TBdat$CON, TBdat$TRTTB, TBdat$CONTB)
## Fitting a random-effects model using arm-level approach
## Not run:
if(requireNamespace('INLA', quietly = TRUE)){
require('INLA', quietly = TRUE)
fit.TB.RE.INLA <- meta_inla(TBdatINLA, type = 'RE', approach = 'arm-level',
tau.prior = 'uniform', tau.par = c(0, 5))
}
## End(Not run)