nltm {nltm} | R Documentation |
Fit Non-Linear Transformation Model for analyzing survival data
Description
Fits a non-linear transformation model (nltm) for analyzing survival data, see Tsodikov (2003). The class of nltm includes the following currently supported models: Cox proportional hazard, proportional hazard cure, proportional odds, proportional hazard - proportional hazard cure, proportional hazard - proportional odds cure, Gamma frailty, and proportional hazard - proportional odds.
Usage
nltm(formula1=formula(data), formula2=formula(data),
data=parent.frame(), subset, na.action, init=NULL, control,
nlt.model=c("PH","PHC","PO","PHPHC","PHPOC","GFM","PHPO"),
model=FALSE, x=FALSE, y=FALSE, verbose=FALSE, ...)
Arguments
formula1 |
A formula object with the response on the left of a |
formula2 |
A formula corresponding to the short term effect. Will be ignored in models with only one predictor. If not present in models with two predictors, then formula1 will be used both for the long and short term effect. |
data |
A data.frame in which to interpret the variables named in
|
subset |
Expression saying that only a subset of the rows of the data should be used in the fit. |
na.action |
A missing-data filter function, applied to the model.frame, after
any subset argument has been used. Default is
|
init |
Vector of initial values for the calculation of the maximum likelihood estimator of the regression parameters. Default is zero. |
control |
Object specifying iteration limit and other control options. Default
is |
nlt.model |
A character string specifying a non-linear transformation model. Default is Proportional Hazards Model. The conditional survival function
|
model |
If TRUE the model frame is stored. Default is FALSE. |
x |
If TRUE the model matrix is stored. Default is FALSE. |
y |
If TRUE the response matrix is stored. Default is FALSE. |
verbose |
If a file name is given, it stores information from maximization of likelihood and calculation of information matrix in a file. Otherwise, verbose=FALSE. Default is FALSE. |
... |
Other arguments. |
Value
An object of class "nltm"
. See nltm.object
for
details.
Author(s)
Gilda Garibotti (garibotti@crub.uncoma.edu.ar) and Alexander Tsodikov.
References
Tsodikov A. (2003) "Semiparametric models: a generalized self-consistency approach". Journal of the Royal Statistical Society B, 65, Part 3, 759-774.
Tsodikov A. (2002) "Semi-parametric models of long- and short-term survival: an application to the analysis of breast cancer survival in Utah by age and stage". Statistics in Medicine, 21, 895-920.
Tsodikov A., Garibotti G. (2006) "Profile information matrix for nonlinear transformation models". to appear in Journal of Lifetime Data Analysis.
Tsodikov A., Ibrahim J., Yakovlev A. (2003) "Estimating cure rates from survival data: an alternative to two-component mixture models". Journal of the American Statistical Association, Vol. 98, No. 464, 1063-1078.
Wendland M., Tsodikov A., Glenn M., Gaffney D. (2004) "Time interval to the development of breast carcinoma after treatment for Hodgkin disease". Cancer Vol. 101, No. 6, 1275-1282.
See Also
nltm.object
, summary.nltm
,
nltm.control
Examples
# fit a Proportional Odds Model
data(melanoma, package="nltm")
fit <- nltm(Surv(time,status) ~ size + age, data=melanoma, nlt.model="PO")
summary(fit)