smsn.nl {nlsmsn} | R Documentation |
Fit univariate NL-SMSN regression
Description
Return EM algorithm output for NL-SMSN regression for both "Homoscedastic" and "Heteroscedastic" (univaritate case, p=1).
Usage
smsn.nl(y, x = NULL, z = NULL, betas = NULL, sigma2 = NULL,
shape = NULL, rho = NULL,
nu = NULL, nlf = NULL, rho.func = 1,
reg.type = "Homoscedastic", criteria = FALSE,
family = "Skew.t", error = 1e-05, iter.max = 100)
Arguments
y |
the response vector |
x |
the independent covariates |
z |
the independent covariates for sigma2. "Heteroscedastic" model ONLY! |
betas |
regression coefficient(s) vector |
sigma2 |
initial value for the scale parameter |
shape |
initial value for the skewness parameter |
rho |
initial value for "Heteroscedastic" coefficient rho. "Heteroscedastic" model ONLY! |
nu |
the parameter of the scale variable (vector or scalar) of the SMSN family (kurtosis parameter). For the "Skew.cn" must be a vector of length 2 and values in (0,1) |
nlf |
non linear function for the regression |
rho.func |
Choose the type of heteroscedasticity for sigma2. If rho.func == 1 ( f(z,rho) = exp(z*rho) ) and rho.func == 2 ( f(z,rho) = z^rho ). |
reg.type |
the type of possible regression: "Homoscedastic" or "Ho"; "Heteroscedastic" or "He". |
criteria |
if TRUE, loglik, AIC, BIC will be calculated |
family |
distribution famility to be used in fitting ("t", "Skew.t", "Skew.cn", "Skew.slash", "Skew.normal", "Normal") |
error |
the covergence maximum error |
iter.max |
maximum iterations of the EM algorithm |
Value
Estimated values of the location, scale, skewness, regression coefficients and "Heteroscedastic" coefficient (when reg.type = "He").
Author(s)
Aldo Garay amedina@ime.usp.br, Marcos Prates marcosop@est.ufmg.br and Victor Lachos hlachos@ime.unicamp.br
References
Aldo M. Garay, Victor H. Lachos, Carlos A. Abanto-Valle (2011). "Nonlinear regression models based on scale mixture of skew-normal distributions". Journal of the Korean Stastical Society, 40, 115-124.\
Victor H. Lachos, Dipankar Bandyopadhyay and Aldo M. Garay (2011). "Heteroscedastic nonlinear regression models based on scale mixture of skew-normal distributions". Statistics -and Probability Letters, 81, 1208-1217.
Examples
##see examples in \code{\link{Oil}} and \code{\link{Ultrasonic}}