growthmodels {nlsMicrobio} | R Documentation |
Bacterial growth models
Description
Formulas of primary growth models commonly used in predictive microbiology
Usage
baranyi
baranyi_without_Nmax
baranyi_without_lag
buchanan
buchanan_without_Nmax
buchanan_without_lag
gompertzm
Details
These models describe the evolution of the decimal logarithm of the microbial count (LOG10N) as a function of the time (t).
baranyi
is the model of Baranyi and Roberts (1994) with four parameters (LOG10N0, mumax, lag, LOG10Nmax)
baranyi_without_Nmax
is the model of Baranyi and Roberts (1994) with three parameters (LOG10N0, mumax, lag), without braking
baranyi_without_lag
is the model of Baranyi and Roberts (1994) with three parameters (LOG10N0, mumax, LOG10Nmax), without lag
buchanan
is the three-phase linear model proposed by Buchanan et al. (1997)
buchanan_without_Nmax
is the two-phase linear model with three parameters (LOG10N0, mumax, lag), without braking
buchanan_without_lag
is the two-phase linear model with three parameters (LOG10N0, mumax, LOG10Nmax), without lag
gompertzm
is the modified Gompertz model introduced by Gibson et al. (1988) and reparameterized by Zwietering et al. (1990)
Value
A formula
Author(s)
Florent Baty, Marie-Laure Delignette-Muller
References
Baranyi J and Roberts, TA (1994) A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, 23, 277-294.
Buchanan RL, Whiting RC, Damert WC (1997) When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiology, 14, 313-326.
Gibson AM, Bratchell N, Roberts TA (1988) Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. International Journal of Food Microbiology, 6, 155 -178.
Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K (1990) Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875-1881.
Examples
# Example 1
data(growthcurve1)
nls1 <- nls(baranyi, growthcurve1,
list(lag=4, mumax=1, LOG10N0 = 4, LOG10Nmax = 9))
nls2 <- nls(gompertzm,growthcurve1,
list(lag = 4, mumax = 1, LOG10N0 = 4, LOG10Nmax = 9))
nls3 <- nls(buchanan, growthcurve1,
list(lag = 4, mumax = 1, LOG10N0 = 4, LOG10Nmax = 9))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,2))
plotfit(nls1, smooth = TRUE)
plotfit(nls2, smooth = TRUE)
plotfit(nls3, smooth = TRUE)
par(def.par)
# Example 2
data(growthcurve2)
nls4 <- nls(baranyi_without_Nmax, growthcurve2,
list(lag = 2, mumax = 0.4, LOG10N0 = 7.4))
nls5 <- nls(buchanan_without_Nmax,growthcurve2,
list(lag = 2, mumax = 0.4, LOG10N0 = 7.4))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,1))
plotfit(nls4, smooth = TRUE)
plotfit(nls5, smooth = TRUE)
par(def.par)
# Example 3
data(growthcurve3)
nls6 <- nls(baranyi_without_lag, growthcurve3,
list(mumax = 1, LOG10N0 = 0, LOG10Nmax = 5))
nls7 <- nls(buchanan_without_lag, growthcurve3,
list(mumax = 1, LOG10N0 = 0, LOG10Nmax = 5))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,1))
plotfit(nls6, smooth = TRUE)
plotfit(nls7, smooth = TRUE)
par(def.par)