Estimators of Non-Linear Cross-Validated Risks Optimized for Small Samples


[Up] [Top]

Documentation for package ‘nlpred’ version 1.0.1

Help Pages

.Dy Compute one of the terms of the efficient influence function
.estim_fn An estimating function for cvAUC
.estim_fn_nested_cv An estimating function for cvAUC with initial estimates generated via nested cross-validation
.get_auc Compute the AUC given the cdf and pdf of psi
.get_cv_estim Helper function to turn prediction_list into CV estimate of SCRNP
.get_density Function to estimate density needed to evaluate standard errors.
.get_nested_cv_quantile Helper function to get quantile for a single training fold data when nested CV is used.
.get_one_fold Helper function to get results for a single cross-validation fold
.get_predictions Worker function for fitting prediction functions (possibly in parallel)
.get_psi_distribution Compute the conditional (given Y = y) estimated distribution of psi
.get_psi_distribution_nested_cv Compute the conditional (given Y = y) CV-estimated distribution of psi
.get_quantile Helper function to get quantile for a single training fold data when nested CV is NOT used.
.make_long_data Worker function to make long form data set needed for CVTMLE targeting step
.make_long_data_nested_cv Worker function to make long form data set needed for CVTMLE targeting step when nested cv is used
.make_targeting_data Helper function for making data set in proper format for CVTMLE
.process_input Unexported function from cvAUC package
adult adult
bank bank
boot_auc Compute the bootstrap-corrected estimator of AUC.
boot_scrnp Compute the bootstrap-corrected estimator of SCRNP.
cardio Cardiotocography
ci.cvAUC_withIC ci.cvAUC_withIC
cv_auc Estimates of CVAUC
cv_scrnp Estimates of CV SCNP
drugs drugs
fluc_mod_optim_0 Helper function for CVTMLE grid search
fluc_mod_optim_1 Helper function for CVTMLE grid search
F_nBn_star Compute the targeted conditional cumulative distribution of the learner at a point
F_nBn_star_nested_cv Compute the targeted conditional cumulative distribution of the learner at a point where the initial distribution is based on cross validation
glmnet_wrapper Wrapper for fitting a lasso using package 'glmnet'.
glm_wrapper Wrapper for fitting a logistic regression using 'glm'.
lpo_auc Compute the leave-pair-out cross-validation estimator of AUC.
one_boot_auc Internal function used to perform one bootstrap sample. The function 'try's to fit 'learner' on a bootstrap sample. If for some reason (e.g., the bootstrap sample contains no observations with 'Y = 1') the learner fails, then the function returns 'NA'. These 'NA's are ignored later when computing the bootstrap corrected estimate.
one_boot_scrnp Internal function used to perform one bootstrap sample. The function 'try's to fit 'learner' on a bootstrap sample. If for some reason (e.g., the bootstrap sample contains no observations with 'Y = 1') the learner fails, then the function returns 'NA'. These 'NA's are ignored later when computing the bootstrap corrected estimate.
print.cvauc Print results of cv_auc
print.scrnp Print results of cv_scrnp
randomforest_wrapper Wrapper for fitting a random forest using randomForest.
ranger_wrapper Wrapper for fitting a random forest using ranger.
stepglm_wrapper Wrapper for fitting a forward stepwise logistic regression using 'glm'.
superlearner_wrapper Wrapper for fitting a super learner based on 'SuperLearner'.
wine wine
xgboost_wrapper Wrapper for fitting eXtreme gradient boosting via 'xgboost'