slsqp {nloptr} | R Documentation |
Sequential Quadratic Programming (SQP)
Description
Sequential (least-squares) quadratic programming (SQP) algorithm for nonlinearly constrained, gradient-based optimization, supporting both equality and inequality constraints.
Usage
slsqp(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,
hinjac = NULL,
heq = NULL,
heqjac = NULL,
nl.info = FALSE,
control = list(),
deprecatedBehavior = TRUE,
...
)
Arguments
x0 |
starting point for searching the optimum. |
fn |
objective function that is to be minimized. |
gr |
gradient of function |
lower , upper |
lower and upper bound constraints. |
hin |
function defining the inequality constraints, that is
|
hinjac |
Jacobian of function |
heq |
function defining the equality constraints, that is |
heqjac |
Jacobian of function |
nl.info |
logical; shall the original NLopt info been shown. |
control |
list of options, see |
deprecatedBehavior |
logical; if |
... |
additional arguments passed to the function. |
Details
The algorithm optimizes successive second-order (quadratic/least-squares) approximations of the objective function (via BFGS updates), with first-order (affine) approximations of the constraints.
Value
List with components:
par |
the optimal solution found so far. |
value |
the function value corresponding to |
iter |
number of (outer) iterations, see |
convergence |
integer code indicating successful completion (> 1) or a possible error number (< 0). |
message |
character string produced by NLopt and giving additional information. |
Note
See more infos at https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/.
Author(s)
Hans W. Borchers
References
Dieter Kraft, “A software package for sequential quadratic programming”, Technical Report DFVLR-FB 88-28, Institut fuer Dynamik der Flugsysteme, Oberpfaffenhofen, July 1988.
See Also
alabama::auglag
, Rsolnp::solnp
,
Rdonlp2::donlp2
Examples
## Solve the Hock-Schittkowski problem no. 100 with analytic gradients
## See https://apmonitor.com/wiki/uploads/Apps/hs100.apm
x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {(x[1] - 10) ^ 2 + 5 * (x[2] - 12) ^ 2 + x[3] ^ 4 +
3 * (x[4] - 11) ^ 2 + 10 * x[5] ^ 6 + 7 * x[6] ^ 2 +
x[7] ^ 4 - 4 * x[6] * x[7] - 10 * x[6] - 8 * x[7]}
hin.hs100 <- function(x) {c(
2 * x[1] ^ 2 + 3 * x[2] ^ 4 + x[3] + 4 * x[4] ^ 2 + 5 * x[5] - 127,
7 * x[1] + 3 * x[2] + 10 * x[3] ^ 2 + x[4] - x[5] - 282,
23 * x[1] + x[2] ^ 2 + 6 * x[6] ^ 2 - 8 * x[7] - 196,
4 * x[1] ^ 2 + x[2] ^ 2 - 3 * x[1] * x[2] + 2 * x[3] ^ 2 + 5 * x[6] -
11 * x[7])
}
S <- slsqp(x0.hs100, fn = fn.hs100, # no gradients and jacobians provided
hin = hin.hs100,
nl.info = TRUE,
control = list(xtol_rel = 1e-8, check_derivatives = TRUE),
deprecatedBehavior = FALSE)
## The optimum value of the objective function should be 680.6300573
## A suitable parameter vector is roughly
## (2.330, 1.9514, -0.4775, 4.3657, -0.6245, 1.0381, 1.5942)
S