mma {nloptr} | R Documentation |
Method of Moving Asymptotes
Description
Globally-convergent method-of-moving-asymptotes (MMA) algorithm for gradient-based local optimization, including nonlinear inequality constraints (but not equality constraints).
Usage
mma(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,
hinjac = NULL,
nl.info = FALSE,
control = list(),
deprecatedBehavior = TRUE,
...
)
Arguments
x0 |
starting point for searching the optimum. |
fn |
objective function that is to be minimized. |
gr |
gradient of function |
lower , upper |
lower and upper bound constraints. |
hin |
function defining the inequality constraints, that is
|
hinjac |
Jacobian of function |
nl.info |
logical; shall the original NLopt info been shown. |
control |
list of options, see |
deprecatedBehavior |
logical; if |
... |
additional arguments passed to the function. |
Details
This is an improved CCSA ("conservative convex separable approximation") variant of the original MMA algorithm published by Svanberg in 1987, which has become popular for topology optimization.
Value
List with components:
par |
the optimal solution found so far. |
value |
the function value corresponding to |
iter |
number of (outer) iterations, see |
convergence |
integer code indicating successful completion (> 1) or a possible error number (< 0). |
message |
character string produced by NLopt and giving additional information. |
Note
“Globally convergent” does not mean that this algorithm converges to the global optimum; rather, it means that the algorithm is guaranteed to converge to some local minimum from any feasible starting point.
Author(s)
Hans W. Borchers
References
Krister Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations”, SIAM J. Optim. 12 (2), p. 555-573 (2002).
See Also
Examples
# Solve the Hock-Schittkowski problem no. 100 with analytic gradients
# See https://apmonitor.com/wiki/uploads/Apps/hs100.apm
x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {(x[1] - 10) ^ 2 + 5 * (x[2] - 12) ^ 2 + x[3] ^ 4 +
3 * (x[4] - 11) ^ 2 + 10 * x[5] ^ 6 + 7 * x[6] ^ 2 +
x[7] ^ 4 - 4 * x[6] * x[7] - 10 * x[6] - 8 * x[7]}
hin.hs100 <- function(x) {c(
2 * x[1] ^ 2 + 3 * x[2] ^ 4 + x[3] + 4 * x[4] ^ 2 + 5 * x[5] - 127,
7 * x[1] + 3 * x[2] + 10 * x[3] ^ 2 + x[4] - x[5] - 282,
23 * x[1] + x[2] ^ 2 + 6 * x[6] ^ 2 - 8 * x[7] - 196,
4 * x[1] ^ 2 + x[2] ^ 2 - 3 * x[1] * x[2] + 2 * x[3] ^ 2 + 5 * x[6] -
11 * x[7])
}
gr.hs100 <- function(x) {
c( 2 * x[1] - 20,
10 * x[2] - 120,
4 * x[3] ^ 3,
6 * x[4] - 66,
60 * x[5] ^ 5,
14 * x[6] - 4 * x[7] - 10,
4 * x[7] ^ 3 - 4 * x[6] - 8)
}
hinjac.hs100 <- function(x) {
matrix(c(4 * x[1], 12 * x[2] ^ 3, 1, 8 * x[4], 5, 0, 0,
7, 3, 20 * x[3], 1, -1, 0, 0,
23, 2 * x[2], 0, 0, 0, 12 * x[6], -8,
8 * x[1] - 3 * x[2], 2 * x[2] - 3 * x[1], 4 * x[3], 0, 0, 5, -11),
nrow = 4, byrow = TRUE)
}
# The optimum value of the objective function should be 680.6300573
# A suitable parameter vector is roughly
# (2.330, 1.9514, -0.4775, 4.3657, -0.6245, 1.0381, 1.5942)
# Using analytic Jacobian
S <- mma(x0.hs100, fn.hs100, gr = gr.hs100,
hin = hin.hs100, hinjac = hinjac.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8),
deprecatedBehavior = FALSE)
# Using computed Jacobian
S <- mma(x0.hs100, fn.hs100, hin = hin.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8),
deprecatedBehavior = FALSE)