cobyla {nloptr} | R Documentation |
Constrained Optimization by Linear Approximations
Description
COBYLA is an algorithm for derivative-free optimization with nonlinear inequality and equality constraints (but see below).
Usage
cobyla(
x0,
fn,
lower = NULL,
upper = NULL,
hin = NULL,
nl.info = FALSE,
control = list(),
deprecatedBehavior = TRUE,
...
)
Arguments
x0 |
starting point for searching the optimum. |
fn |
objective function that is to be minimized. |
lower , upper |
lower and upper bound constraints. |
hin |
function defining the inequality constraints, that is
|
nl.info |
logical; shall the original NLopt info be shown. |
control |
list of options, see |
deprecatedBehavior |
logical; if |
... |
additional arguments passed to the function. |
Details
It constructs successive linear approximations of the objective function and
constraints via a simplex of n+1
points (in n
dimensions), and
optimizes these approximations in a trust region at each step.
COBYLA supports equality constraints by transforming them into two
inequality constraints. This functionality has not been added to the wrapper.
To use COBYLA with equality constraints, please use the full
nloptr
invocation.
Value
List with components:
par |
the optimal solution found so far. |
value |
the function value corresponding to |
iter |
number of (outer) iterations, see |
convergence |
integer code indicating successful completion (> 0) or a possible error number (< 0). |
message |
character string produced by NLopt and giving additional information. |
Note
The original code, written in Fortran by Powell, was converted in C for the SciPy project.
Author(s)
Hans W. Borchers
References
M. J. D. Powell, “A direct search optimization method that models the objective and constraint functions by linear interpolation,” in Advances in Optimization and Numerical Analysis, eds. S. Gomez and J.-P. Hennart (Kluwer Academic: Dordrecht, 1994), p. 51-67.
See Also
Examples
## Solve the Hock-Schittkowski problem no. 100 with analytic gradients
## See https://apmonitor.com/wiki/uploads/Apps/hs100.apm
x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {(x[1] - 10) ^ 2 + 5 * (x[2] - 12) ^ 2 + x[3] ^ 4 +
3 * (x[4] - 11) ^ 2 + 10 * x[5] ^ 6 + 7 * x[6] ^ 2 +
x[7] ^ 4 - 4 * x[6] * x[7] - 10 * x[6] - 8 * x[7]}
hin.hs100 <- function(x) {c(
2 * x[1] ^ 2 + 3 * x[2] ^ 4 + x[3] + 4 * x[4] ^ 2 + 5 * x[5] - 127,
7 * x[1] + 3 * x[2] + 10 * x[3] ^ 2 + x[4] - x[5] - 282,
23 * x[1] + x[2] ^ 2 + 6 * x[6] ^ 2 - 8 * x[7] - 196,
4 * x[1] ^ 2 + x[2] ^ 2 - 3 * x[1] * x[2] + 2 * x[3] ^ 2 + 5 * x[6] -
11 * x[7])
}
S <- cobyla(x0.hs100, fn.hs100, hin = hin.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8, maxeval = 2000),
deprecatedBehavior = FALSE)
## The optimum value of the objective function should be 680.6300573
## A suitable parameter vector is roughly
## (2.330, 1.9514, -0.4775, 4.3657, -0.6245, 1.0381, 1.5942)
S