| data.gen {nlnet} | R Documentation | 
Simulated Data Generation
Description
Generating gene matrix as a example of input.
Usage
 
data.gen(n.genes=100, n.samples=100, n.grps=10, aver.grp.size=10, 
n.fun.types=6, epsilon=0.1, n.depend=0)
Arguments
| n.genes | the number of rows of the matrix. | 
| n.samples | the number of columns of the matrix. | 
| n.grps | the number of hidden clusters. | 
| aver.grp.size | averge number of genes in a cluster. | 
| n.fun.types | number of function types to use. | 
| epsilon | noise level. | 
| n.depend | data generation dependence structure. can be 0, 1, 2. | 
Details
The data generation scheme is described in detail in IEEE ACM Trans. Comput. Biol. Bioinform. 10(4):1080-85.
Value
return the data including gene and clustering.
| data | the gene matrix | 
| grps | the predicted clustering | 
Author(s)
Tianwei Yu<tyu8@emory.edu>
Examples
##generating a gene matrix with 100 genes, some in 5 clusters, and 100 samples per gene.
output<-data.gen(n.genes=100, n.samples=10, n.grps=5)
##get the gene matrix from the source of data.
matrix<-output$data
##get the hiden clusters from the source of data.
grps<-output$grp
[Package nlnet version 1.4 Index]