data.gen {nlnet} | R Documentation |
Simulated Data Generation
Description
Generating gene matrix as a example of input.
Usage
data.gen(n.genes=100, n.samples=100, n.grps=10, aver.grp.size=10,
n.fun.types=6, epsilon=0.1, n.depend=0)
Arguments
n.genes |
the number of rows of the matrix. |
n.samples |
the number of columns of the matrix. |
n.grps |
the number of hidden clusters. |
aver.grp.size |
averge number of genes in a cluster. |
n.fun.types |
number of function types to use. |
epsilon |
noise level. |
n.depend |
data generation dependence structure. can be 0, 1, 2. |
Details
The data generation scheme is described in detail in IEEE ACM Trans. Comput. Biol. Bioinform. 10(4):1080-85.
Value
return the data including gene and clustering.
data |
the gene matrix |
grps |
the predicted clustering |
Author(s)
Tianwei Yu<tyu8@emory.edu>
Examples
##generating a gene matrix with 100 genes, some in 5 clusters, and 100 samples per gene.
output<-data.gen(n.genes=100, n.samples=10, n.grps=5)
##get the gene matrix from the source of data.
matrix<-output$data
##get the hiden clusters from the source of data.
grps<-output$grp
[Package nlnet version 1.4 Index]