KPC {nlnet} | R Documentation |
implementation of K-Profiles Clustering
Description
implementation of K-Profiles Clustering
Usage
KPC(dataset, nCluster, maxIter = 100, p.max = 0.2, p.min = 0.05)
Arguments
dataset |
the data matrix with genes in the row and samples in the column |
nCluster |
the number of clusters K |
maxIter |
the maximum number of iterations |
p.max |
the starting p-value cutoff to exclude noise genes |
p.min |
the final p-value cutoff to exclude noise genes |
Value
Return a list about gene cluster and the list of value p
cluster |
gene cluster |
p.list |
a list of value p |
Author(s)
Tianwei Yu <tianwei.yu@emory.edu>
References
http://www.hindawi.com/journals/bmri/aa/918954/
See Also
Examples
## generating the data matrix & hiden clusters as a sample
input<-data.gen(n.genes=40, n.grps=4)
## now input includes data matrix and hiden clusters, so get the matrix as input.
input<-input$data
## set nCluster value to 4
kpc<-KPC(input,nCluster=4)
##get the hiden cluster result from "KPC"
cluster<-kpc$cluster
##get the list of p
p<-kpc$p.list
[Package nlnet version 1.4 Index]