vcov.nlmm {nlmm} | R Documentation |
Calculate Variance-Covariance Matrix for a Fitted Generalized Laplace Mixed-Effects Object
Description
Returns the variance-covariance matrix of the all the parameters of a fitted nlmm
object.
Usage
## S3 method for class 'nlmm'
vcov(object, ...)
Arguments
object |
an |
... |
not used. |
Details
Gives the variance-covariance matrix of the GLME estimator, on the scale of the unconstrained, unrestricted parameters. The size is d x d
, d = p + r + 2 + 1 + s
, with p
fixed coefficients, r
non-redundant parameters of the random effects distribution, 2 shape parameters, 1 scale parameter, s
parameters of the residual variance function (if specified in the model), in this order.
Value
a matrix.
Author(s)
Marco Geraci
See Also
Examples
## Not run:
data(rats)
# Number of parameters is d = 6 + 3 + 2 + 1 + 0 = 12
fit <- nlmm(y ~ trt*time, random = ~ time, group = id, data = rats,
cov = "pdSymm", control = nlmmControl(multistart = FALSE))
fit$par
vcov(fit)
# Number of parameters is d = 6 + 1 + 2 + 1 + 4 = 14
fit <- nlmm(y ~ trt*time, random = ~ 1, group = id, data = rats,
control = nlmmControl(multistart = FALSE), weights = varIdent(form = ~ 1|time))
fit$par
vcov(fit)
# Number of parameters is d = 6 + 1 + 0 + 1 + 0 = 8
# Note that the shape parameters are now constrained
fit <- nlmm(y ~ trt*time, random = ~ 1, group = id, data = rats,
control = nlmmControl(alpha.index = 0, multistart = FALSE))
fit$par
vcov(fit)
## End(Not run)
[Package nlmm version 1.1.0 Index]