MultivariateGenLaplace {nlmm} | R Documentation |
The Multivariate Asymmetric Generalized Laplace Distribution
Description
Density and random generation for the multivariate asymmetric generalized Laplace distribution.
Usage
dmgl(x, mu = rep(0, d), sigma = diag(d), shape = 1, log = FALSE)
rmgl(n, mu, sigma, shape = 1)
Arguments
x |
vector of quantiles. |
n |
number of observations. |
mu |
simmetry parameter. |
sigma |
scale parameter – positive-definite matrix. |
shape |
shape parameter. |
log |
logical; if |
Details
This is the distribution described by Kozubowski et al (2013) and has density
f(x) =
\frac{2\exp(\mu'\Sigma^{-1}x)}{(2\pi)^{d/2}\Gamma(s)|\Sigma|^{1/2}}(\frac{Q(x)}{C(\Sigma,\mu)})^{\omega}B_{\omega}(Q(x)C(\Sigma,\mu))
where \mu
is the symmetry parameter, \Sigma
is the scale parameter, Q(x)=\sqrt{x'\Sigma^{-1}x}
, C(\Sigma,\mu)=\sqrt{2+\mu'\Sigma^{-1}\mu}
, \omega = s - d/2
, d
is the dimension of x
, and s
is the shape parameter (note that the parameterization in nlmm
is \alpha = \frac{1}{s}
). \Gamma
denotes the Gamma function and B_{u}
the modified Bessel function of the third kind with index u
. The parameter \mu
is related to the skewness of the distribution (symmetric if \mu = 0
). The variance-covariance matrix is s(\Sigma + \mu\mu')
. The multivariate asymmetric Laplace is obtained when s = 1
(see MultivariateLaplace
).
In the symmetric case (\mu = 0
), the multivariate GL distribution has two special cases: multivariate normal for s \rightarrow \infty
and multivariate symmetric Laplace for s = 1
.
The univariate symmetric GL distribution is provided via GenLaplace
, which gives the distribution and quantile functions in addition to the density and random generation functions.
Value
dmgl
gives the GL density of a d
-dimensional vector x
. rmgl
generates a sample of size n
of d
-dimensional random GL variables.
Author(s)
Marco Geraci
References
Geraci, M. and Farcomeni A. (2020). A family of linear mixed-effects models using the generalized Laplace distribution. Statistical Methods in Medical Research, 29(9), 2665-2682.
Kozubowski, T. J., K. Podgorski, and I. Rychlik (2013). Multivariate generalized Laplace distribution and related random fields. Journal of Multivariate Analysis 113, 59-72.