Laplace {nlmm} | R Documentation |
The Laplace Distribution
Description
Density, distribution function, quantile function and random generation for the (symmetric) Laplace distribution.
Usage
dl(x, mu = 0, sigma = 1, log = FALSE)
pl(x, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
ql(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rl(n, mu = 0, sigma = 1)
Arguments
x |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
mu |
location parameter. |
sigma |
positive scale parameter. |
log , log.p |
logical; if |
lower.tail |
logical; if |
Details
The Laplace distribution has density
f(x) =
\frac{1}{\sqrt{2}\sigma}e^{-\frac{\sqrt(2)}{\sigma} |x - \mu|}
where \mu
is the location parameter and \sigma
is the scale parameter. Note that based on this parameterization, the distribution has variance \sigma^2
.
Value
dl
gives the density and rl
generates random deviates.
Author(s)
Marco Geraci
References
Kotz, S., Kozubowski, T., and Podgorski, K. (2001). The Laplace distribution and generalizations. Boston, MA: Birkhauser.
See Also
MultivariateLaplace
, GenLaplace