GenLaplace {nlmm} | R Documentation |
The Univariate Symmetric Generalized Laplace Distribution
Description
Density, distribution function, quantile function and random generation for the univariate symmetric generalized Laplace distribution.
Usage
dgl(x, sigma = 1, shape = 1, log = FALSE)
pgl(x, sigma = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
qgl(p, sigma = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
rgl(n, sigma = 1, shape = 1)
Arguments
x |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
sigma |
positive scale parameter. |
shape |
shape parameter. |
log , log.p |
logical; if |
lower.tail |
logical; if |
Details
The univariate symmetric generalized Laplace distribution (Kotz et al, 2001, p.190) has density
f(x) =
\frac{2}{\sqrt{2\pi}\Gamma(s)\sigma^{s+1/2}}(\frac{|x|}{\sqrt{2}})^{\omega}B_{\omega}(\frac{\sqrt{2}|x|}{\sigma})
where \sigma
is the scale parameter, \omega = s - 1/2
, and s
is the shape parameter. \Gamma
denotes the Gamma function and B_{u}
the modified Bessel function of the third kind with index u
. The variance is s\sigma^{2}
.
This distribution is the univariate and symmetric case of MultivariateGenLaplace
.
Value
dgl
gives the density, pgl
gives the distribution function, qgl
gives the quantile function, and rgl
generates random deviates.
Author(s)
Marco Geraci
References
Kotz, S., Kozubowski, T., and Podgorski, K. (2001). The Laplace distribution and generalizations. Boston, MA: Birkhauser.