vpcPlot {nlmixr2plot} | R Documentation |
VPC based on ui model
Description
VPC based on ui model
Usage
vpcPlot(
fit,
data = NULL,
n = 300,
bins = "jenks",
n_bins = "auto",
bin_mid = "mean",
show = NULL,
stratify = NULL,
pred_corr = FALSE,
pred_corr_lower_bnd = 0,
pi = c(0.05, 0.95),
ci = c(0.05, 0.95),
uloq = fit$dataUloq,
lloq = fit$dataLloq,
log_y = FALSE,
log_y_min = 0.001,
xlab = NULL,
ylab = NULL,
title = NULL,
smooth = TRUE,
vpc_theme = NULL,
facet = "wrap",
scales = "fixed",
labeller = NULL,
vpcdb = FALSE,
verbose = FALSE,
...,
seed = 1009,
idv = "time",
cens = FALSE
)
vpcPlotTad(..., idv = "tad")
vpcCensTad(..., cens = TRUE, idv = "tad")
vpcCens(..., cens = TRUE, idv = "time")
Arguments
fit |
nlmixr2 fit object |
data |
this is the data to use to augment the VPC fit. By
default is the fitted data, (can be retrieved by
|
n |
Number of VPC simulations |
bins |
either "density", "time", or "data", "none", or one of the approaches available in classInterval() such as "jenks" (default) or "pretty", or a numeric vector specifying the bin separators. |
n_bins |
when using the "auto" binning method, what number of bins to aim for |
bin_mid |
either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries. |
show |
what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci) |
stratify |
character vector of stratification variables. Only 1 or 2 stratification variables can be supplied. |
pred_corr |
perform prediction-correction? |
pred_corr_lower_bnd |
lower bound for the prediction-correction |
pi |
simulated prediction interval to plot. Default is c(0.05, 0.95), |
ci |
confidence interval to plot. Default is (0.05, 0.95) |
uloq |
Number or NULL indicating upper limit of quantification. Default is NULL. |
lloq |
Number or NULL indicating lower limit of quantification. Default is NULL. |
log_y |
Boolean indicting whether y-axis should be shown as logarithmic. Default is FALSE. |
log_y_min |
minimal value when using log_y argument. Default is 1e-3. |
xlab |
label for x axis |
ylab |
label for y axis |
title |
title |
smooth |
"smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE. |
vpc_theme |
theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme() |
facet |
either "wrap", "columns", or "rows" |
scales |
either "fixed" (default), "free_y", "free_x" or "free" |
labeller |
ggplot2 labeller function to be passed to underlying ggplot object |
vpcdb |
Boolean whether to return the underlying vpcdb rather than the plot |
verbose |
show debugging information (TRUE or FALSE) |
... |
Args sent to |
seed |
an object specifying if and how the random number generator should be initialized |
idv |
Name of independent variable. For |
cens |
is a boolean to show if this is a censoring plot or
not. When |
Value
Simulated dataset (invisibly)
Author(s)
Matthew L. Fidler
Examples
one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7; label("Additive residual error")
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
})
}
fit <-
nlmixr2est::nlmixr(
one.cmt,
data = nlmixr2data::theo_sd,
est = "saem",
control = list(print = 0)
)
vpcPlot(fit)