| regularmodel {nlmixr2extra} | R Documentation | 
Regular lasso model
Description
Regular lasso model
Usage
regularmodel(
  fit,
  varsVec,
  covarsVec,
  catvarsVec,
  constraint = 1e-08,
  lassotype = c("regular", "adaptive", "adjusted"),
  stratVar = NULL,
  ...
)
Arguments
| fit | nlmixr2 fit. | 
| varsVec | character vector of variables that need to be added | 
| covarsVec | character vector of covariates that need to be added | 
| catvarsVec | character vector of categorical covariates that need to be added | 
| constraint | theta cutoff. below cutoff then the theta will be fixed to zero. | 
| lassotype | must be 'regular' , 'adaptive', 'adjusted' | 
| stratVar | A variable to stratify on for cross-validation. | 
| ... | Other parameters to be passed to optimalTvaluelasso | 
Value
return fit of the selected lasso coefficients
Author(s)
Vishal Sarsani
Examples
## Not run: 
one.cmt <- function() {
  ini({
    tka <- 0.45; label("Ka")
    tcl <- log(c(0, 2.7, 100)); label("Cl")
    tv <- 3.45; label("V")
    eta.ka ~ 0.6
    eta.cl ~ 0.3
    eta.v ~ 0.1
    add.sd <- 0.7
  })
  model({
    ka <- exp(tka + eta.ka)
    cl <- exp(tcl + eta.cl)
    v <- exp(tv + eta.v)
    linCmt() ~ add(add.sd)
  })
}
d <- nlmixr2data::theo_sd
d$SEX <-0
d$SEX[d$ID<=6] <-1
fit <- nlmixr2(one.cmt, d, est = "saem", control = list(print = 0))
varsVec <- c("ka","cl","v")
covarsVec <- c("WT")
catvarsVec <- c("SEX")
# Model fit with regular lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec)
# Model fit with adaptive lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec,lassotype='adaptive')
# Model fit with adaptive-adjusted lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec, lassotype='adjusted')
## End(Not run)
[Package nlmixr2extra version 2.0.10 Index]