regularmodel {nlmixr2extra} | R Documentation |
Regular lasso model
Description
Regular lasso model
Usage
regularmodel(
fit,
varsVec,
covarsVec,
catvarsVec,
constraint = 1e-08,
lassotype = c("regular", "adaptive", "adjusted"),
stratVar = NULL,
...
)
Arguments
fit |
nlmixr2 fit. |
varsVec |
character vector of variables that need to be added |
covarsVec |
character vector of covariates that need to be added |
catvarsVec |
character vector of categorical covariates that need to be added |
constraint |
theta cutoff. below cutoff then the theta will be fixed to zero. |
lassotype |
must be 'regular' , 'adaptive', 'adjusted' |
stratVar |
A variable to stratify on for cross-validation. |
... |
Other parameters to be passed to optimalTvaluelasso |
Value
return fit of the selected lasso coefficients
Author(s)
Vishal Sarsani
Examples
## Not run:
one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
})
}
d <- nlmixr2data::theo_sd
d$SEX <-0
d$SEX[d$ID<=6] <-1
fit <- nlmixr2(one.cmt, d, est = "saem", control = list(print = 0))
varsVec <- c("ka","cl","v")
covarsVec <- c("WT")
catvarsVec <- c("SEX")
# Model fit with regular lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec)
# Model fit with adaptive lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec,lassotype='adaptive')
# Model fit with adaptive-adjusted lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec, lassotype='adjusted')
## End(Not run)
[Package nlmixr2extra version 2.0.10 Index]