adaptivelassoCoefficients {nlmixr2extra}R Documentation

Return Adaptive lasso coefficients after finding optimal t

Description

Return Adaptive lasso coefficients after finding optimal t

Usage

adaptivelassoCoefficients(
  fit,
  varsVec,
  covarsVec,
  catvarsVec,
  constraint = 1e-08,
  stratVar = NULL,
  ...
)

Arguments

fit

nlmixr2 fit.

varsVec

character vector of variables that need to be added

covarsVec

character vector of covariates that need to be added

catvarsVec

character vector of categorical covariates that need to be added

constraint

theta cutoff. below cutoff then the theta will be fixed to zero.

stratVar

A variable to stratify on for cross-validation.

...

Other parameters to be passed to optimalTvaluelasso

Value

return data frame of final lasso coefficients

Author(s)

Vishal Sarsani

Examples

## Not run: 
one.cmt <- function() {
  ini({
    tka <- 0.45; label("Ka")
    tcl <- log(c(0, 2.7, 100)); label("Cl")
    tv <- 3.45; label("V")
    eta.ka ~ 0.6
    eta.cl ~ 0.3
    eta.v ~ 0.1
    add.sd <- 0.7
  })
  model({
    ka <- exp(tka + eta.ka)
    cl <- exp(tcl + eta.cl)
    v <- exp(tv + eta.v)
    linCmt() ~ add(add.sd)
  })
}

d <- nlmixr2data::theo_sd
d$SEX <-0
d$SEX[d$ID<=6] <-1

fit <-
 nlmixr2(
   one.cmt, d,
   est = "saem",
   control = list(print = 0)
 )
varsVec <- c("ka","cl","v")
covarsVec <- c("WT")
catvarsVec <- c("SEX")

# Adaptive Lasso coefficients:

lassoDf <- adaptivelassoCoefficients(fit, varsVec, covarsVec, catvarsVec)

## End(Not run)

[Package nlmixr2extra version 2.0.10 Index]