aqrVPC {nlmeVPC} | R Documentation |
The visual predictive checks using the additive quantile regression (aqrVPC)
Description
This function draws the visual predictive check (VPC) plot using additive quantile regression. The quantile regression methods are used to calculate quantiles.
Usage
aqrVPC(orig_data,
sim_data,
probs = c(0.1,0.5,0.9),
conf.level = 0.95,
X_name = "TIME",
Y_name = "DV",
MissingDV = NULL,
plot_caption = TRUE,
DV_point = TRUE,
plot_flag = TRUE,
linesize = 0.7,
pointsize = 0.7,
captionsize = 10,
qss_lambda = NULL, ...)
Arguments
orig_data |
A data frame of original data with X and Y variable. |
sim_data |
A matrix of simulated data with only Y values collected. |
probs |
A numeric vector of probabilities. |
conf.level |
Confidence level of the interval. |
X_name |
Name of X variable in orig_data (usually "TIME" in pharmacokinetic data). |
Y_name |
Name of Y variable in orig_data (usually "DV" in pharmacokinetic data). |
MissingDV |
Name of missing indicator variable in orig_data, which have value 1 if missing, value 0 otherwise. (usually "MDV" in pharmacokinetic data). |
plot_caption |
Put caption with additional information if TRUE; omit if FALSE. |
DV_point |
Draw point (X, Y) in the plot if TRUE; omit if FALSE. |
plot_flag |
Draw plot if TRUE; generate data for drawing plot if FALSE. |
linesize |
Size of line in the plot. |
pointsize |
Size of point in the plot. |
captionsize |
Size of caption. |
qss_lambda |
Smoothing parameter in quantreg::qss function. Larger lambda produces a smoother fit. |
... |
Arguments to be passed to methods. |
Value
aqrVPC plot or the values to draw aqrVPC plot.
References
Koenker, Roger, and Kevin F. Hallock. "Quantile regression." Journal of economic perspectives 15.4 (2001): 143-156.
Jamsen, K. M., Patel, K., Nieforth, K., & Kirkpatrick, C. M. (2018). A regression approach to visual predictive checks for population pharmacometric models. CPT: pharmacometrics & systems pharmacology, 7(10), 678-686.
Examples
data(origdata)
data(simdata)
aqrVPC(origdata,simdata)