| fdHess {nlme} | R Documentation | 
Finite difference Hessian
Description
Evaluate an approximate Hessian and gradient of a scalar function using finite differences.
Usage
fdHess(pars, fun, ...,
       .relStep = .Machine$double.eps^(1/3), minAbsPar = 0)
Arguments
| pars | the numeric values of the parameters at which to evaluate the
function  | 
| fun | a function depending on the parameters  | 
| ... | Optional additional arguments to  | 
| .relStep | The relative step size to use in the finite
differences.  It defaults to the cube root of  | 
| minAbsPar | The minimum magnitude of a parameter value that is considered non-zero. It defaults to zero meaning that any non-zero value will be considered different from zero. | 
Details
This function uses a second-order response surface design known as a “Koschal design” to determine the parameter values at which the function is evaluated.
Value
A list with components
| mean | the value of function  | 
| gradient | an approximate gradient (of length  | 
| Hessian | a matrix whose upper triangle contains an approximate Hessian. | 
Author(s)
José Pinheiro and Douglas Bates bates@stat.wisc.edu
Examples
(fdH <- fdHess(c(12.3, 2.34), function(x) x[1]*(1-exp(-0.4*x[2]))))
stopifnot(length(fdH$ mean) == 1,
          length(fdH$ gradient) == 2,
          identical(dim(fdH$ Hessian), c(2L, 2L)))