nixtla_client_forecast {nixtlar} | R Documentation |
Generate 'TimeGPT' forecast
Description
Generate 'TimeGPT' forecast
Usage
nixtla_client_forecast(
df,
h = 8,
freq = NULL,
id_col = NULL,
time_col = "ds",
target_col = "y",
X_df = NULL,
level = NULL,
finetune_steps = 0,
finetune_loss = "default",
clean_ex_first = TRUE,
add_history = FALSE,
model = "timegpt-1"
)
Arguments
df |
A tsibble or a data frame with time series data. |
h |
Forecast horizon. |
freq |
Frequency of the data. |
id_col |
Column that identifies each series. |
time_col |
Column that identifies each timestep. |
target_col |
Column that contains the target variable. |
X_df |
A tsibble or a data frame with future exogenous variables. |
level |
The confidence levels (0-100) for the prediction intervals. |
finetune_steps |
Number of steps used to finetune 'TimeGPT' in the new data. |
finetune_loss |
Loss function to use for finetuning. Options are: "default", "mae", "mse", "rmse", "mape", and "smape". |
clean_ex_first |
Clean exogenous signal before making the forecasts using 'TimeGPT'. |
add_history |
Return fitted values of the model. |
model |
Model to use, either "timegpt-1" or "timegpt-1-long-horizon". Use "timegpt-1-long-horizon" if you want to forecast more than one seasonal period given the frequency of the data. |
Value
'TimeGPT”s forecast.
Examples
## Not run:
nixtlar::nixtla_set_api_key("YOUR_API_KEY")
df <- nixtlar::electricity
fcst <- nixtlar::nixtla_client_forecast(df, h=8, id_col="unique_id", level=c(80,95))
## End(Not run)