nixtla_client_detect_anomalies {nixtlar} | R Documentation |
Detect anomalies with 'TimeGPT'
Description
Detect anomalies with 'TimeGPT'
Usage
nixtla_client_detect_anomalies(
df,
freq = NULL,
id_col = NULL,
time_col = "ds",
target_col = "y",
level = c(99),
clean_ex_first = TRUE,
model = "timegpt-1"
)
Arguments
df |
A tsibble or a data frame with time series data. |
freq |
Frequency of the data. |
id_col |
Column that identifies each series. |
time_col |
Column that identifies each timestep. |
target_col |
Column that contains the target variable. |
level |
The confidence level (0-100) for the prediction interval used in anomaly detection. Default is 99. |
clean_ex_first |
Clean exogenous signal before making the forecasts using 'TimeGPT'. |
model |
Model to use, either "timegpt-1" or "timegpt-1-long-horizon". Use "timegpt-1-long-horizon" if you want to forecast more than one seasonal period given the frequency of the data. |
Value
A tsibble or a data frame with the anomalies detected in the historical period.
Examples
## Not run:
nixtlar::nixtla_set_api_key("YOUR_API_KEY")
df <- nixtlar::electricity
fcst <- nixtlar::nixtla_client_anomaly_detection(df, id_col="unique_id")
## End(Not run)
[Package nixtlar version 0.5.2 Index]