nixtla_client_cross_validation {nixtlar} | R Documentation |
Perform cross validation with 'TimeGPT'.
Description
Perform cross validation with 'TimeGPT'.
Usage
nixtla_client_cross_validation(
df,
h = 8,
freq = NULL,
id_col = NULL,
time_col = "ds",
target_col = "y",
X_df = NULL,
level = NULL,
n_windows = 1,
step_size = NULL,
finetune_steps = 0,
finetune_loss = "default",
clean_ex_first = TRUE,
model = "timegpt-1"
)
Arguments
df |
A tsibble or a data frame with time series data. |
h |
Forecast horizon. |
freq |
Frequency of the data. |
id_col |
Column that identifies each series. |
time_col |
Column that identifies each timestep. |
target_col |
Column that contains the target variable. |
X_df |
A tsibble or a data frame with future exogenous variables. |
level |
The confidence levels (0-100) for the prediction intervals. |
n_windows |
Number of windows to evaluate. |
step_size |
Step size between each cross validation window. If NULL, it will equal the forecast horizon (h). |
finetune_steps |
Number of steps used to finetune 'TimeGPT' in the new data. |
finetune_loss |
Loss function to use for finetuning. Options are: "default", "mae", "mse", "rmse", "mape", and "smape". |
clean_ex_first |
Clean exogenous signal before making the forecasts using 'TimeGPT'. |
model |
Model to use, either "timegpt-1" or "timegpt-1-long-horizon". Use "timegpt-1-long-horizon" if you want to forecast more than one seasonal period given the frequency of the data. |
Value
A tsibble or a data frame with 'TimeGPT”s cross validation result.
Examples
## Not run:
nixtlar::nixtla_set_api_key("YOUR_API_KEY")
df <- nixtlar::electricity
fcst <- nixtlar::nixtla_client_cross_validation(df, h = 8, id_col = "unique_id", n_windows = 5)
## End(Not run)