dLogGamma {nimbleNoBounds} | R Documentation |
Log transformed gamma distribution.
Description
dLogGamma
and rLogGamma
provide a log-transformed gamma distribution.
Usage
dLogGamma(x, shape = 1, scale = 1, log = 0)
rLogGamma(n = 1, shape = 1, scale = 1)
Arguments
x |
A continuous random variable on the real line. Let y=exp(x). Then y ~ dgamma(shape,scale). |
shape |
Shape parameter of y ~ dgamma(shape,scale). |
scale |
Scale parameter of y ~ dgamma(shape,scale). |
log |
Logical flag to toggle returning the log density. |
n |
Number of random variables. Currently limited to 1, as is common in nimble. See ?replicate for an alternative. |
Value
The density or log density of x, such that x = log(y) and y ~ dgamma(shape,scale).
Author(s)
David R.J. Pleydell
Examples
## Create a gamma random variable, and transform it to the log scale
n = 100000
shape = 2
scale = 2
y = rgamma(n=n, shape=shape, scale=scale)
x = log(y)
## Plot histograms of the two random variables
oldpar <- par()
par(mfrow=n2mfrow(2))
## Plot 1
hist(x, n=100, freq=FALSE)
curve(dLogGamma(x, shape=shape, scale=scale), -4, 5, n=1001, col="red", add=TRUE, lwd=3)
## Plot 2: back-transformed
xNew = replicate(n=n, rLogGamma(n=1, shape=shape, scale=scale))
yNew = exp(xNew)
hist(yNew, n=100, freq=FALSE, xlab="exp(x)")
curve(dgamma(x, shape=shape, scale=scale), 0, 100, n=1001, col="red", lwd=3, add=TRUE)
par(oldpar)
## Create a NIMBLE model that uses this distribution
code = nimbleCode({
log(y) ~ dLogGamma(shape=shape, scale=scale)
log(y2) ~ dLogGamma(shape=shape, rate=1/scale)
log(y3) ~ dLogGamma(mean=shape*scale, sd=scale * sqrt(shape))
})
## Build & compile the model
const = list (shape=shape, scale=scale)
modelR = nimbleModel(code=code, const=const)
simulate(modelR)
modelC = compileNimble(modelR)
## Configure, build and compile an MCMC
conf = configureMCMC(modelC, monitors2=c("y", "y2", "y3"))
mcmc = buildMCMC(conf=conf)
cMcmc = compileNimble(mcmc)
## Run the MCMC & extract samples
samps = runMCMC(mcmc=cMcmc, niter=50000)
x = as.vector(samps[[1]][,"log_y"])
x2 = as.vector(samps[[1]][,"log_y2"])
x3 = as.vector(samps[[1]][,"log_y3"])
y = as.vector(samps[[2]][,"y"])
y2 = as.vector(samps[[2]][,"y2"])
y3 = as.vector(samps[[2]][,"y3"])
## Plot MCMC output
oldpar <- par()
par(mfrow=n2mfrow(4))
## Plot 1: MCMC trajectory
plot(x, typ="l")
## Plot 2: taget density on unbounded sampling scale
hist(x, n=100, freq=FALSE)
curve(dLogGamma(x, shape=shape, scale=scale), -4, 3, n=1001, col="red", lwd=3, add=TRUE)
## Plot 3: taget density on bounded scale
hist(y, n=100, freq=FALSE)
curve(dgamma(x, shape=shape, scale=scale), 0, 25, n=1001, col="red", lwd=3, add=TRUE)
## Plot 4: different parameterisations
nBreaks=51
xLims = range(pretty(range(samps[[1]])))
hist(x, breaks=seq(xLims[1], xLims[2], l=nBreaks), col=rgb(1, 0, 0, 0.1))
hist(x2, breaks=seq(xLims[1], xLims[2], l=nBreaks), col=rgb(0, 1, 0, 0.1), add=TRUE)
hist(x3, breaks=seq(xLims[1], xLims[2], l=nBreaks), col=rgb(0, 0, 1, 0.1), add=TRUE)
par(oldpar)
[Package nimbleNoBounds version 1.0.3 Index]